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CHAPTER 1
AN INTRODUCTION TO FLOATING POINT

1.1 WHAT IS A FLOATING POINT NUMBER?

The numbers we encounter every day, such as 12, 34.56, 0.0789,
efc., are known as fixed point numbers because the decimal point
is in a fixed position. Such numbers are fairly closely matched in
magnitude and within about ten orders of magnitude from unity.
Examples of such numbers are found in bank accounts, unit
prices of store items and paychecks.

In scientific applications, the numbers encountered can be very
large. Avogadro’s number expressed in fixed point notation is
approximately 602,250,000,000,000,000,000,000. A scientist
may also use Planck’s constant which would be approximately
0.000000000000000000000000006626196 erg sec in fixed point
notation. These examples demonstrate the undesirability of writ-
ing fixed point notation and why most scientists use the concise
finating point notation to represent numbers such as Avogadro’s
number and Planck’s constant.

When a scientist writes the value of Avogadro’s number, he writes
6.0225 x 1023, Similarly he would express Planck’s constant as
6.626196 x 10—27 erg sec.

As we can observe, the number +6.0225 x 1023, consists of 4
parts:
Sign —
The sign of the number (+ or —). The plus sign is usually
assumed when no sign is shown.
Mantissa —
Sometimes also known as the fraction. The mantissa describes
the actual number. In the example, the mantissa is 6.0225.
Exponent —
Sometimes also known as the characteristic. The exponent
describes the order of magnitude of the number. In the exam-
ple, the exponent is 23.
Base —
Sometimes also known as the radix. The base is the number
base in which the exponent is raised. In the example, the base
is 10.

The parts of a floating point number can then be represented by
the following equation:

F=(-1)SxMxBE
where

F = floating point number

S = sign of the floating point number, so that S = 0 if the
number is positive and S = 1 if the number is negative

M= mantissa of the floating point number

B = base of the floating point number

E = exponent of the floating point number

1.2 WHEN SHOULD FLOATING POINT BE USED?

Although floating point numbers are useful when numbers of very
different magnitude are used, they should not be used indiscrim-
inately. There is an inherent loss of accuracy and increased
execution time for floating point computations on most compu-
ters. Floating point computation suffers the greatest loss of ac-
curacy when two numbers of closely matched magnitude are
subtracted from each other or two numbers of opposite sign but
almost equal magnitude are added together. Therefore, the As-
sociative Law in arithmetic

A+B+C)=(A+B)+C

does not always hold true if B is of opposite sign to A and C and
very similar in magnitude to either A or C.

In most computers, hardware floating point multiply and divide
takes approximately the same amount of execution time as
hardware fixed point multiply and divide, but hardware floating
point add and subtract usually takes considerably more time then
hardware fixed point add and subtract. If the computer lacks
floating point hardware, all floating point computations will con-
sume more CPU time than fixed point computations.



CHAPTER 2
FLOATING POINT FORMATS

2.1 COMMONLY USED FLOATING POINT BASES

The following three number bases are commonly used in floating
point number systems:

1) Binary — The base is 2.
2) Binary Code Decimal (BCD) — The base is 10.
3) Hexadecimal — The base is 16.

2.2 COMPARISONS OF THE THREE

COMMONLY USED BASES
Binary —
The main advantages of the binary floating point format are
relative ease of hardware implementation and maximum ac-
curacy for a given number of bits. On the negative side, the
conversion of an ASCII (American Standard Code for Informa-
tion Interchange) decimal string to and from a binary floating
number is difficult and time consuming. In commercial applica-
tions where input and output are always decimal character
strings, the binary floating point numbers will have an inherent
rounding error because numbers such as 0.11g cannot be
represented exactly with a binary floating point number.

BCD -

The advantages and disadvantages of the BCD floating point
numbers are just the opposite of the binary floating point num-
bers. BCD floating point is most commonly used in commercial
applications where the computations involved are usually sim-
ple and input/output is always in the form of decimal ASCII
strings.

Hexadecimal —

The hexadecimal floating point numbers have similar advan-
tages and disadvantages as the binary floating point when
compared with the BCD floating point format. When the same
number of bits of exponent and mantissa are used, the
hexadecimal floating point gives a considerably larger dynamic
range than the binary floating point format. For example, for a
7-bit exponent, the largest positive number that can be rep-
resented in the hexadecimal floating point is approximately
1664 (approximately 1.16 x 1077. The smallest non-zero posi-
tive number that can be represented is 16—64 (approximately
8.64 x 10—78). By comparison, the largest and smallest positive
numbers that can be represented in a 7-bit exponent binary
system are approximately 1.84 x 1019 and 5.42 x 10—20 re-
spectively.

An advantage of the hexadecimal floating point system over the
binary point system is that during normalization and denormali-
zation of the floating point numbers the hexadecimal system
requires far fewer shifts compared with the binary system, be-
cause the hexadecimal system shifts four places at a time and
most binary systems shift only one place at a time. For more
sophisticated systems where normalization and denormalization
can-be done in one operation, this advantage does not exist. Most
present-day systems do not fall in this category.

This disadvantage of the hexadecimal system is the loss of preci-
sion as compared with the binary system when the number of
mantissa bits are the same. Since the three most significant bits
could be zero when the first digit of the hexadecimal is a 1, this
leads to a loss of 3 bits of accuracy in the worst case. However,
assuming uniform distribution of numbers, the average loss of
accuracy is only 11/15 bits. The above comparison assumes the
binary system does not use an “implied 1” (Section 2.4). The loss
of accuracy in a hexadecimal system compared with a binary
system using an “implied 1” and same number of bits of mantissa
is 4 bits in the worst case and 1 and 11/15 bits on the average.

2.3 DIFFERENT EXPONENT FORMATS

Two types of exponents used in floating point number systems
are the biased exponent and the unbiased exponent. An un-
biased exponent has a two’s complement number. An exponent
said to be biased by N (or excess N notation), means that the
coded exponent is formed by adding N to the actual exponent in
two’s complement form. Any overflow generated from the addi-
tion is ignored. The result becomes an unsigned number. Most
common floating point systems use a biased exponent. Biased
exponents are used to simplify floating point hardware. During
floating point computations, arithmetic operations such as add
and subtract need to be performed on the exponents of the
operands. If a biased exponent is used, the arithmetic logic unit
(ALU) needs only to perform unsigned arithmetic. If an unbiased
exponent is used, the ALU must perform two’s complement
arithmetic, and overflow conditions are more difficult to detect.

2.4 “IMPLIED 1”

Most floating point numbers must always be presented to the
computer in “normalized” form (i.e., the most significant digit of
the mantissa is always non-zero, except if the number is zero).
For a binary floating point system, this would mean the leading
binary bit of the mantissa is always 1 (except when the number is
zero). In some floating point number systems, such as Am9512
format, this 1 bit is not represented on input or output to the
floating point processor. The extra bit can be used for one more
bit of precision or one more bit of exponent range.



CHAPTER 3
FLOATING POINT ARITHMETIC

3.1 INTRODUCTION

This chapter describes the basic principles of performing arith-
metic with floating point numbers. First, the internal mechanism of

The following is a step-by-step description of a floating point add
algorithm (Figure 3.1):

floating point is analyzed. The following discussion uses the a. Unpack TOS and NOS.
Am9512 single precision format although the discussion can b. The exponent of TOS is compared to the exponent of NOS.
apply to other formats with only minor modifications. The c. If the exponents are equal, go to step f.
operands are assumed to be located in a stack. The first operand d. Right-shift the mantissa of the number with the smaller expo-
is called TOS (top of stack) and the second operand s called NOS nent.
(next on stack). e. Increment the smaller exponent and go to step b.
f. Set sign of result to sign of larger number.
3.2 FLOATING POINT ADD AND SUBTRACT g. Set exponent of result to exponent of larger number.
Floating point add and subtract use essentially the same al- h. If sign of the two numbers are not equal, go to m.
gorithm. The only difference is that floating point subtract i. Add mantissas.
changes the sign of the floating point number at top of stack and j.  Right-shift resultant mantissa by 1 and increment exponent of
then performs the floating point add. result by 1.
FsuB 1
EXP =
EXP (TOS)
SIGN (TOS) =
SIGN (TOS) MAN (NOS)
N N
SIGN = SIGN (NOS)
% MAN =
UNPACK MAN (NOS) — MAN (TOS)
TOS & NOS SIGN = SIGN (TOS) ‘
MAN =
MAN (TOS) + MAN (NOS)
EXP (TOS) = N SIGN ;:;‘Gr: (TOS)
EXP (NOS)? MAN (TOS) — MAN (NOS),
Y
RIGP:}"SHIFT N MSB OF
EXF (NOS)? MAN MAN = 17
RIGHT SHIFT EXP = LEFT SHIFT
MAN (TOS) EXP + 1 MAN
1 I
EXP (TOS) = @ Y EXP = EXP — 1
EXP (TOS) + 1
;
ADDITION
ROUNDING

—

RIGHT SHIFT
MAN (NOS)

!

EXP (NOS) =
EXP (NOS) + 1

SET
OVERFLOW
STATUS

SET
UNDERFLOW
STATUS

SUBTRACTION

I

ROUNDING

‘ Exm'

Figure 3.1. Floating Point Add/Subtract Flowchart
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k. Ifthe most significant bit (MSB) of exponent changes from 1to d. Convert EXP (TOS) and EXP (NOS) to unbiased form:

0 as a result of the increment, set overflow status. EXP (TOS) = EXP (TOS) — 12719

I. - Round if necessary and exit. EXP (NOS) = EXP (NOS) — 12749

m. Subtract smaller mantissa from larger mantissa. e. Add exponents:

n. Left-shift mantissa and decrement exponent of result. EXP = EXP (TOS) + EXP (NOS)

o. If MSB of exponent changes from 0 to 1 as a result of the f. If MSB of EXP (TOS) = MSB of EXP (NOS) = 0 and MSB of
decrement, set underflow status and exit. EXP = 1, then set overflow status and exit.

p. If the MSB of the resultant mantissa = 0, go to n. g. lfMSB of EXP (TOS) = MSB of EXP (NOS) = 1 and MSB of

g. Round if necessary and exit. EXP = 0, then set underflow status and exit.

h. Convert exponent back to biased form:
EXP = EXP + 12749

3.3 FLOATING POINT MULTIPLY i. Ifsignof TOS = sign of NOS, set sign of resultto 0; otherwise ,

Floating point multiply basically involves the addition of the expo- set sign of result to 1.

nents and multiplication of the mantissas. The following is a j- Multiply mantissas.

step-by-step description of a floating point multiplication al- k. If MSB of resultant mantissa = 1, right-shift mantissa by 1 and
gorithm (Figure 3.2): increment exponent of resultant.

a. Check if TOS or NOS = 0. I.  If MSB of exponent changes from 1 to 0 as a result of the
b. If either TOS or NOS = 0, Set result to 0 and exit. increment, set overflow status.

c. Unpack TOS and NOS. m. Round if necessary and exit.

!

N =
SIGN (TOS) @ SIGN (NOS)

i

MAN (TOS)°MAN (NOS)

MAN
OVERFLOW?

RIGHT SHIFT

L I

UNPACK
TOS & NOS

RESULT = 0

EXP (TOS) =
EXP (TOS) — 127,

!

EXP (NOS) =
EXP (NOS) - 1274,

!

EXP =
EXP (TOS) + EXP (NOS)

EXP =
EXP + 1

MULTIPLICATION
ROUNDING

SET
OVERFLOW
STATUS

OVERFLOW?

SET
UNDERFLOW
STATUS

UNDERFLOW?

EXP =
EXP + 1274 < EXIT )

MOS-206

Figure 3.2. Floating Point Multiply Flowchart
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3.4. FLOATING POINT DIVIDE

The floating point divide basically involves the subtraction of
exponents and the division of mantissas. The following is a step-
by-step description of a division algorithm (Figure 3.3):

a.

b.
C.
d

If TOS = 0, set divide exception error and exit.
If NOS = 0, set result to 0 and exit.
Unpack TOS and NOS.
Convert EXP (TOS) and EXP (NOS) to unbiased form:
EXP (TOS) = EXP (TOS) — 12719
EXP (NOS) = EXP (NOS) — 12749
Subtract exponent of TOS from exponent of NOS:
EXP = EXP (NOS) — EXP (TOS)
If MSB of EXP (NOS) = 0, MSB of EXP (TOS) = 1, and MSB
of EXP = 1, then set overflow status and exit.

B

If MSB of EXP (NOS) = 1, MSB of EXP (TOS) = 0, and MSB
of EXP = 0, then set underflow status and exit.
Add bias to exponent of result:

EXP = EXP + 12749
If sign of TOS = sign of NOS, set sign of result to 0, else set
sign of result to 1.
Divide mantissa of NOS by mantissa of TOS
If MSB = 0, left-shift mantissa and decrement exponent of
resultant, or else go to n.
If MSB of exponent changes from 0 to 1 as a result of the
decrement, set underflow status.

. Go to k.

Round if necessary and exit.

SIGN (TOS) @ SIGN (NOS)
SET DIVIDE
MAN =
EXCEPTION
STATUS MAN (NOS)/MAN (TOS)
RESULT = 0
UNPACK
TOS & NOS
LEFT SHIFT
l MAN
EXP (TOS) = ‘
EXP (TOS) — 127;¢
EXP =
; EXP - 1
T
EXP (NOS) =
EXP (NOS) — 12749 .
Y
EXP =
EXP (NOS) — EXP (TOS)
SET
v DIVISION
UNDERFLOW? UNDERFLOW
STATUS ROUNDING
Y SET
OVERFLOW? OVERFLOW
STATUS
EXP =
EXP + 127, C - :

MOS-207

Figure 3.3. Floating Point Divide Flowchart



CHAPTER 4
DATA CONVERSION

4.1 INTRODUCTION

This chapter describes how to convert fixed point binary integer to
floating point, floating point to fixed point binary integer, decimal
ASCIl (American Standard Code for Information Interchange)
string to floating point and floating point to decimal ASCII string.
These conversion methods are useful because few real-world
inputs and outputs are in floating point format. When human
interface is involved, the real-world interface is usually a decimal
ASCI! string. If the data are collected through some automatic
means such as an A/D converter, counters, etc., the input is
usually in the form of fixed point binary or BCD integers. In this
chapter, the floating point format is assumed to be the Am9512
single precision format.

4.2 BINARY FIXED POINT TO FLOATING POINT

The input to this routine is assumed to be a 32-bit two’s comple-
ment number and the output is a binary floating point number of

Am9512 format. Figure 4.1 shows the flow chart of such a pro-
gram and Figure 4.2 shows an Am9080A assembly language
subroutine that accomplishes this task.

The data format used in the assembly language conversion is as
follows:

Fixed Point —

Two’s complement number that occupies 4 consecutive mem-
ory locations with the most significant byte residing in low
memory. To address the number, the pointer points to the low
address.

Floating Point —
Am9512 floating point format that occupies 4 consecutive
memory locations. The sign and 7 bits of the exponent resides
inthe low address. To address the number, the pointer points to
the low address.

FLOAT = FIX
EXP = 15049
SIGN = 0

BIT 23 - 30
= EXP

BIT 31
= SIGN

SIGN = 1
FLOAT = —FLOAT

RIGHT SHIFT
FLOAT
EXP = EXP + 1

LEFT SHIFT
FLOAT
EXP = EXP - 1

]

BIT24 ~- 31
ALL 0?

MOS-639

Figure 4.1. Fix to Float Conversion Flowchart
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oeeo
2001
2oo2
0002
0006
goev
000A

6000
200F

0011
2012
2213

80216
2e18

BO1E
2010
9210

ORJ

C5
D5
ES
CD2eeo
EB
CDeeoe
CA4D0G0

26002
gESE

7E
B7?
F21Be0

2689
Chegeao

7E
B7
CAZCe@

o e e ws we wo e wo AN

(5]
OO~V ix (AN -
hef we we we wo we we s we  wo e

[N ]

“o we e

.o eo oo we

txf e e we

SOURCE STATEMENT

PAGEWIDTE (80) MACROFILE

o a3 B e e 3k o o e o 3 o e o e e o s s ok e ook e e o 3K 3 ok e e ok ol o

SUBROUTINES TO CONVERT FIX TO FLOAT
AND FLOAT TO FIX POINT FORMATS

3 Neale e 3 3 e e ol 3 5 356 3 46 34 03 356 e e e 3 3¢ 4 3 e e 3 e 3K A KK

NAME CONVT

PUBLIC FXTOFL,FLTOFX

EXTRN QMOVE,QTEST,QNEG,QLSL,QLSR,QCLR
CSEG PAGE

FIX TO FLOAT CONVERSION ROUTINE

TO CALL THE PROGRAM,

HL = POINTER TO TEE FIXED POINT NUMEER

DE = POINTER TO TEE FLOATING POINT NUMBER

ACC AND PSW ARE ALTERED BY THE SUBROUTINE
ALL OTHER REGISTERS ARE NOT DISTURBED

PUSH B y SAVE BC REGISTER PAIR

PUSE D y SAVE DESTINATION POINTER
PUSH H 3 SAVE SOURCE POINTER

CALL QMOVE 3 COPY FIXED PT NO. INTO FLOAT
XCHCG 3PUT FLOAT POINTER IN HL

CALL QTEST yTEST IF NO. = 0°?

JZ RETN sYES - JUMP

THE NUMBER IS NOT ZERO, INIT. SIGN AND EXP

MVI B, 'R REG = SIGN
MVI C,23+127 3C REG = EXPONENT + BIAS

TEST IF THE NUMBER IS NEGATIVE

MOV A ,M 3GET MSE FROM FLOAT
ORA A y SET FLAGS
JP FX1¢ 3y JUMP IF NO. IS POSITIVE

THFE FIXED POINT NUMBER IS NEGATIVE
NEGATE NUMBER AND SET SIGN = 1

MVI B,80H s SET SIGN TO 80B
CALL QNEG sNEGATE NUMBER IN FLOAT

TEST IF MCST SIGNIFICANT BYTE OF FLOAT = @

MOV A M 3GET MSB OF FLOAT
ORA A y SET FLAGS
JZ FX2@ yJUMP IF MSB = 9

Figure 4.2. Float to Fix Conversion Flowchart
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LOC

2020
9021
0024
2025
0026
2029

232C
002D
@oZE
PO2F
0030
o231
0034
0035
2038

20338
003C
0O3E
@33F
20e40
2041
0042
e044
2045

0246
0047
2048
2049
004B
204C

204ar
P04E
004F
0050

0BJ

49
CDeeer
7E
B7
C220290
C33Be0

54
5D
13
1A
r7
FAZBOQR
2D
CDoCee
C32F00

1A
E67F
12
79
oF
4F
EE8D
EB
BE

77
ER
79
E67F
B9
77

E1
D1
C1
co

o b

LINE

55
56
57
58
58
€60
61
62
63
64
€65
66
67
68
66
70
71
72
73
74
75
76
at4
78
7¢
8¢
81
82
83
84
85
8€
87

88
89
90
91

93
94
95
96
g7
98
99
100
191
102
103
194
125
10€
197
198

SOURCE STATEMENT
’
’ MSB NOT ZERO, RIGHT SHIFT REQUIRED
y
FX15: INK C 5INC. EXP BY 1
CALL QLSR 3 LOGICAL SHIFT RIGHT OF FLOAT
MOV A LM yTEST IF MSE = @
ORA A y SET FLAGS
JNZ FX15 yNOT ZERO, SHIFT SOME MORE
JMP FX30 3y ZERO, SHIFT CCMPLETE
’
) MSE = @, TEST IF LEFT SHIFT REQUIRED
’
FX2¢: ~CV D,H
MOV E,L yPUT FLOAT POINTER INTO DE
INX D yPOINT TO NEXT MSE OF FLOAT
FX25: IDAX D yGET NEXT MSB
ORA A + SET FLAGS
JM FX30 sDONE IF BIT 23 = 1
ICR C yDEC. EXP BY 1
CALL QLSL yLOGICAL LEFT SHIFT OF FLOAT
JMP FX25 s TRY AGAIN
’
H SHIFT COMPLETE, MANTISSA FORMEL IN FLOAT
’
FX3o: LDAX D iGET NEXT MSE OF FLOAT
ANI 7FH s STRIP OFF HIDDEN 1
STAX D yPUT IT BACK IN MEMORY
MOV A,C 3 GET EXPONENT
RRC sROTATE RIGHT
MOY C,A yPUT ROTATED EXP. BACK IN C
ANI 80E 3 EXTRACT LSB OF EXPONENT
XCHG yPUT NEXT MSB POINTER IN HL
ORA M sCOMBINE MSB OF MANTISSA WITH EX
P
MOV M,A
XCHG sRESTORE POINTERS
MOV A,C yGET ROTATED EXPONENT
ANI 7FH y STRIP OF LSB
ORA B y COMBINE EXP WITH SIGN
MOV M,A s SET MSB OF FLOAT
’
’ CONVERSION COMPLETE, RETURN TO CALLER
’
RETN: POP H yRESTORE ALL REGISTERS
POP D
POP B
RET yRETURN TO CALLER
’
’ FLOAT TO FIX CONVERSION ROUTINE
’ T0 CALL THE PROGRAM
y HL = POINTER TO THE FLOATING POINT NUMBER
’ TE = POINTER TO THE FIXED POINT NUMBER
' ON RETURN
) A REG =@ AND Z FLAG = 1 IF NO ERROR
’ A =1 AND Z FLAG = @ IF OVERFLOW ERROR

Figure 4.2. Float to Fix Conversion Flowchart (Cont.)
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LOC OBJ LINE SOURCE STATEMENT

185 ; OTHER REGISTERS ARE NOT DISTURBED
110 3
8251 C5 111 FLTOFX: PUSH B $SAVE ALL REGISTERS
@952 D5 112 PUSH D
@053 ES 113 PUSH H
9054 CDooeo E 114 CALL QMOVE 5 COPY FLOAT TO FIX
@057 Cheeee E 115 CALL QTEST s TEST IF INPUT NO. = @7
205A CAAZQD c 11€ J7 FL40O SRETURN IF INPUT IS ZERO
117 5
118 ; EXTRACT SIGN AND EXPONENT FROM FLOATING PT NO.
116 ;
295D EB 12¢ XCHG yHL POINTS TO FIX
@05F 7E 121 MOV A,M yGET MSB
@0O5F k680 122 ANI 8@H 3 EXTRACT SIGN BIT
pe61 47 123 MOV B,A ySAVE SIGN IN B
0862 7E 124 MOV A,M yGET MSB AGAIN
2063 07 125 RLC JMULTIPLY BY 2
@064 E6FE 12€ ANI OFEH ySTRIP OF LSB
0066 4F 127 MOV CL,A iSAVE IN C
goe? 23 128 INX B yPOINT TO NEXT MSB
0068 7E 129 MOV A,M yGET NEXT MSB
0069 @7 130 RLC yMOVE LSB OF EXP INTO CARRY
P96A D26E0D C 131 INC $+4 3 SKIP IF NO CARRY
286D 8C 132 INR C yPROPAGATE CARRY INTO EXP
QO6E 7E 133 MOV A,M sGET NEXT MSB
Q06F F689 134 ORI 8@H s SET FIDDEN BIT
@071 77 135 MOV M,A yRESTORE NEXT MSB
pe72 2B 13€ LCX H sNOW HL POINTS TO MSB AGAIN
pe73 3600 137 MVI M,0 » CLEAR MSB
2075 79 138 MOV A,C $GET BIASED EXPONENT
2@76 D67F 13¢ SUI 127 sSTRIP OFF BIAS
@078 FAA70QQ C 140 JM ZERO yEXP < @, RETURN ZERO AS RESULT
2078 FE1F 141 CPI 31 ; CHECK IF EXP > 31
207D DZALO® C 142 JNC OVFL yJUMP IF NUMBER IS TOO LARGE
geed D617 143 SUI 23 s SUBTRACT EXP BY 23
2082 CASAPQ Y 144 JZ FL30O 7NO SHIFT REQUIRED, CHECK SIGN
2085 4F 145 MOV C,A 3 SAVE SHIFT COUNT
2086 DAS30Q C 146 JC FL2¢@ yCOUNT < @, RIGHT SHIFT
147 3§
148 ; COUNT > @, LEFT SHIFT REQUIRED
149
0089 CDo©GCYo E 15¢ FL1@: CALL QLSL yLOGICAL SHIFT LEFT
2@8C @D 151 DCR C
228D (28920 C 152 JNZ FL1@
2090 C39A00 C 1?3 JMP FL3@
154 ;
155 3 COUNT < @, RIGHT SHIFT REQUIRED
15€ 3
9093 CDegoeo E 157 FL20: CALL QLSR yLOGICAL SHIFT RIGHT
2096 6C 158 INR C
2097 (29300 C 159 JNZ FL2¢
160 ;
161 SHIFT COMPLETE, CHEECK SIGN AND EXIT
162 ;
22GA 78 163 FL30: MOV A,RB yGET SIGN

Figure 4.2. Float to Fix Conversion Flowchart (Cont.)
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LOC OBJ LINE SOURCE STATEMENT
@29R B7 164 ORA A y SET FLAGS
@09C FZA200 c 165 JP FL40 i PLUS SIGN,
PO9F CDe0eo E 16€ CALL QNEG sMINUS SIGN,
167 ;
168 ; CLEAR ERROR FLAG AND RETURN
169 ;
@OA2 AF 17¢ FL40: XRA A
Q0A3 E1 171 POP H s RESTORE ALL
20A4 D1 172 POP D
@0A5 C1 172 POP B
@0A6 C9 174 RET
175 3
176 ; ZERO FIX POINT NUMBER AND RE
177 3
POA? CDoece E 178 ZERO: CALL QCLR y CLEAR FIX P
PCAA C3A200 c 17¢ JMP FL4@ s RETURN
180 ;
181 SET OVERFLOW FLAG ANL RETURN
182 ;
P0AD 3EQ1 183 QOVFL: MVI 4,1 7 SET A REG
@@AF B7 184 ORA & ySET Z FLAG
02B0 C2A300 C 18¢ JMP FL40+1 sRESTORE REG
18€ ENT
PURLIC SYMBOLS
FLTOFX C @051 FXTOFL C 2¢20
EXTERNAL SYMBOLS
QCLR E ¢oee QLSL F 0000 QLSR E @200 QMOVE E
QONEG E 2000 QTEST E 0002
USER SYMBOLS
FL1@ C 0089 F129 C 2093 FL30 C 2¢9A FL40 C
FLTCFX C 0051 FX19 C oe1r FX15 C o020 FX20 C
FXx25 C 0ez2F FX30 C 0038 FXTOFL C 9009 OVFL C
QCLR E goee QLSL E 2000 QLSR E gooe QMOVE E
QNEG E 0000 QTEST F 00090 RETN C 924D ZERO C
ASSEMBLY COMPLETE, NO ERRORS

SKIP NEGATION
NEGATE NUMBER

REGISTERS

TURN
OINT NUMBER

. AND RETURN

ooee

0OA2
002C
2@AD
2000
BOA7

Figure 4.2. Float to Fix Conversion Flowchart (Cont.)
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LCC

pees
0001
002
0033
0005
2006
oeov
2008
8099
PooA
200D
2OOE
POOF
2010

2211
2012
2013
2014
0015
8016
2017
2018
2019
2O1A

@018
001C
0011
Q01
@o1F

CBJ

Cc5
D5
ES
0624
7E
12
23
13
25
C2@508 C
F1
D1
C1
Cco

ES
7E

2
o

B6
23
RE

B6
E1l
co

Cc5
23

Icd
(o]

23
0604

LINE

WOO-IMWUG AN

SCURCE STATEMENT

$ PAGEWIDTH(8¢) MACROFILE
; 3 % 3 ok A 3 3k 3 ok 3 ok 3 2l ok A % 3 o Ak Ak e o 4k ke o o ok ek 3k
;
; QUADRUPLE PRECISION SUBROUTINES
; 3R 3R N 3K AE T 3 35 K M 3K 3E 3 K N8 3¢ NE e 2 e (e 3 3K KK R
;
PURLIC QMOVE,QTEST,QNEG,QLSL,QLS®R,QCLR
;
CSEG
]
H MOVE 4 BYTES POINTED TO BY EL
; TO 4 BYTES POINTEL BY DE
; M(DE) = M(EL)
;
QMOVE: PUSH B $SAVE ALL REGISTERS
PUSE D
FUSE H
MVI B,4
QM1@: MOV A M ;GET BYTE FROM M(HL)
STAX D ; STORE BYTE IN M(DE)
INX H ; BUMP SOURCE POINTER
INX D ;RUMP DESTINATION POINTER
ICR B
INZ QM1g ;UNTIL 4 TIMES
FOP H $RESTORE ALL REGISTERS
POP D
POP B
RET
’
; TEST 4 BYTES POINTED TO HL FOR &
H M(HL) = @?
;
QTEST: PUSH H ;SAVE EL
MOV A ,M ;GET FIRST BYTE
INX H
ORA M ; COMBINE WITH 2ND BYTE
INX H
ORA M ;COMBINE WITH 3RD BYTE
INX E
CRA M ; COMBINE WITH 4TH BYTE
FOP B s RESTORE HL
RET
’
; NEGATE THE QUAD PRECISION NUMBER PCINTED TO BY H
L
; M(HEL) = - M(HL)
;
QONEG:  FUSE B ;SAVE BC
INX H }MOVE HL TO LSB
INX E
INX H
MVI B,4

Figure 4.2. Float to Fix Conversion Flowchart (Cont.)
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Loc

2621
@022
0024
0025
P02€
@az7
2028
P0O2B
2020
902T

QO2E
@02F
290302
9031
0032
0034
2035
0836
0037
0038
2039
PB3A
283L
P03E
OO3F

2040
0041
0042
0044
9045
@046
o047
2048
0049
Q04A
204
Q04K
@04F

2059
2051
2052
@053
2254

0BJ

B7

3ECQ

9FE

(al4

2B

25

C22200 C
23

C1

Cc9

C5
23
23
23
2604
B7?
7E
17
7
2B
25
C23500 C
23
C1
co

C5
ES
2604
B7
7E
1F
77
23
25
C245¢0 c
k1
C1
c9

ES
AF
7
23

7

LINE

54
55
5€
57
58
56
60
€1
62
63
64
65
66
67
68
69
7@
71
72
73
74
75
7€
al4
78
(g°]
8¢
81
82
83
84
85
8€
87
88
89
o0
91
92
93
94
95
9€
97
98
99
100
101
192
192
104
195
1¢€
197
1¢8

QN1g:

U =e e e we

LSL:

QLSL1@:

O s o wo =0

LSR:

0
=
w
=<
-
=
.

(2l
=
=]

HD e e ee e

SCURCE STATEMENT

ORA A y CLEAR CARRY

MVI A, 3 CLEAR A WITHOUT AFFECTING CARRY
SBE M

MOV M,A

DCX H

CCR B

JNZ QN1g

INX H yRESTORE HL

FOP B s RESTORE EC

EET

LOGICAL SHIFT LEFT 4 BYTES POINTED TO HL
M(HEL) = LSL(M(HL))

FUSH B s SAVE BC

INX yMOVE POINTED TO LSB
INX
INX
MVI
ORA
MOV
RAL
MOV
ICX
DCR
JINZ
INX
POP
RET

-

e S

s CLEAR CARRY

LSL1o
y RESTORE BL
yRESTORE BC

WinowlkmT Phtdimm

LOGICAL RIGHT SHIFT OF 4 BYTES POINTED TO BY HL
M(HL) = LSR(M(HEL))

PUSH B ySAVE BC
FUSH H y SAVE HL

MVI B,4

ORA A » CLEAR CARRY

: MOV A,M

RAR

MOV M,A

INX B

DCR B

JNZ QLSR1@

POP H s RESTORE HL
POP B yRESTORE BC
RET

CLEAR 4 BYTES POINTED TO BY HL
M(HL) = o

FUSH H
XRA A
MOV M,A
INX H
MOV M,A

Figure 4.2. Float to Fix Conversion Flowchart (Cont.)
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LOC OBJ LINE
2058 23 128
ges56 77 114
d0E? 23 111
@es8 77 112
2059 E1 113
@e54 C9 114
115 35
11€
PUELIC SYMECLS
QCLR C 20590 QLSL C 202F
QNEG C 221B QTEST C 9011
EXTERNAL SYMBOLS
USER SYMEBOLS
QCLR C 2050 QLSL C @22F
QLSR10 C @045 QM1e C o2¢5
QNEG C 201B QTEST C 2011
ASSEMEBLY COMPLETE, NO ERRORS

SCURCE STATEMENT

INX
MOV
INX
b
POP
RET

ENT

QLSR

QLSI1¢ C @835
CMOVE

mIXmm

C 2042 QMCVE ¢ 0222

QLSK
QN12

C 20409

C geca C o222

Figure 4.2. Float to Fix Conversion Flowchart (Cont.)

The following is a step-by-step description of the algorithm used
in the conversion example:

a.

b
c.
d.
e

Copy the fixed point number into the location of the floating
point number.

Test the floating point number to see if it is zero.

Return to caller if the number is zero.

The sign is defaulted to 0 (plus).

Default the actual exponent to 23. This is the exponent that
would be valid if no shift is required, i.e., the most significant 1
is in bit position 23. Since the Am9512 format has a bias of
127410 the bias is added to the default value to make the
default exponent 231g + 12710 = 15010.

If bit 31 in the floating point register = 1, then the input number
is a negative number. The number in the floating point register
is negated (two’'s complement negation) and the sign is
setto 1.

If bits 24-31 of the floating point register are all zeroes, then

13

the input number has an exponent less than or equal 23. The
program transfers to step j for possible left shifts. Otherwise
the program falls through to h.

Bits 24-31 are not all zeroes. This means the magnitude of the
fixed point number is greater than 223. The floating point
register is right-shifted one place and the exponent is in-
cremented by 1.

Test bits 24-31 again for all zeroes. If they are not all zeroes,
repeat step h. If bits 24-31 are all zeroes, shifting is complete
and the program transfers to step I.

Bits 2431 are all zero. If bits 23 = 1, no more shifting is
required and the program transfers to step I.

Left-shift floating point register. Decrement exponent by 1 and
repeat step |.

Shifting is complete. The exponent is stored into bits 23-30.
(The original bit 23, the “hidden 1" is overwritten).

. Store the sign into bit 31 of the floating point register.

Return to caller.



4.3 FLOATING POINT TO BINARY FIXED POINT

Figure 4.2 shows the flowchart of a floating point to fixed point
conversion flowchart. An Am9080A assembly language sub-
routine that implements to flowchart is shown in Figure 4.3. The
following is a step-by-step description of the algorithm:

a.
b.
c.

e ~oa

Copy the floating point number into the fixed point register.
If the floating number is zero, return to caller.

Unpack the floating point number from the fixed point register
by removing the exponent and sign. The exponent (in the
unbiased form) and the sign are stored in CPU registers. The
“Hidden 1" is restored in the fixed point register.

If exponent is less than 0, zero fixed point register and exit.
If exponent is larger than 31, set overflow flag and exit.
Subtract 23 from exponent to derive the shift count.

If the adjusted exponent is greater than zero, the original

exponent is greater than 23, the program transfers to step j to
left shift fixed point register, or else it falls through to step h.
If the exponent = 0, shiftis complete and the program trans-
fers to step I.

Right-shift the fixed point number one position and increment
the exponent by 1. Repeat step h.

Left-shift the fixed point number by one position and decre-
ment the exponent by 1.

If the exponent is not zero, repeat step j; or else, the pro-
gram falls through to step I.

Test the original sign of the floating point number. If sign is
positive skip step m.

. If the sign is negative, negate the number in the fixed point

register (two’s complement).
Return to caller.

FIX = FLOAT EXP = EXP - 23
Y N
EXP = 0?
N Y
EXTRACT LEFT SHIFT
SIGN, FIX
EXPONENT EXP = EXP — 1

SET
OVERFLOW FIX =0
FLAG

RIGHT SHIFT
FIX
EXP = EXP + 1

L

FIX = —FIX

‘ RETURN ,

MOS-640

Figure 4.3. Fix to Float/Float to Fix Conversion Subroutines
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4.4 DECIMAL TO BINARY FLOATING POINT CONVERSION

When a programmer works with binary floating point numbers, it
is often necessary to convert decimal numbers into binary floating
point notation to enter the desired numbers into the machine.
Figure 4.4 shows the flowchart of such a conversion program and
Figure 4.5 shows a BASIC program that does the conversion.

The program uses an array A of 32 elements. Each element of the
array corresponds to one bit of the floating point number: A(31) is
the sign bit, A(30) to A(23) represent the exponent and A(22) to
A(0) represent the mantissa. Other variables used are as follows:

D - The decimal number entered from console

E — The exponent of the binary floating point number

H — An index to the hexadecimal string with range 0-15

H$ — An ASCII string of all hexadecimal characters used for
hexadecimal output

I — An integer used for loop index

J — A number used for comparison when unpacking the
exponent and the mantissa

M — The mantissa of the binary floating point number

The following equation converts a floating point number from one
base to another:

Let E» = Exponent of new number
M2 = Mantissa of new number
Bo = Base of new number
Ny = Original number

Given Ny and By, the equations used to solve Ez and My are:

Ep = INT (LOG (N1)/LOG (Bp))
Mz = N1/(B2 * * E2)

{

ZERO ARRAY
A(0) — AB1) = 0 E=

GET UNBIASED
EXPONENT

INT (LOG D/LOG 2)

|

ouTPUT GET MANTISSA
“00000000" DECIMAL NO. M=D21E
GET BIASED
EXPONENT
E=E+127

n

|

CONVERT EXP
TO BINARY
A(30) — A(23) = E

1

SET SIGN
A@1) =1

CONVERT MANT
TO BINARY
A@22) — A(0) =M

l

NEGATE D
D=-D

OUTPUT
A(31) — A(0) IN
HEXADECIMAL

I

MOS-641

Figure 4.4. Decimal to Binary Floating Point Conversion Flowchart



10

20

30

40

50

60

72

8¢

90

100
110
120
13¢
14¢
150
1€0
179
180
169
200
219
220
230
240
250
2€e
270
289
299
2¢0
310
320
32

340
350
360
370
380
380
400
419
420
430
440
450
460

REM
REM

DIM A(32) .

H$ = "9123456789ABCDEF i
PRINT "INPUT DECIMAL NO. ";
INPUT T

REM CLEAR BINARY ARRAY
FOR I = ¢ TO 31

2
@ THEN 458

@ THEN A(@) = 1

(D)

ND THE EXPONENT
INT(LOG(D)/LOG(2)) + 1

M = D/2E

REM TFORM BINARY ARRAY FOR EXPONENT

IF E < 1 THEN 250

J = 128

FORI =1T07

J=17J/2

IFED> J THEN A(I) =1 : E=E - J
NEXT I

GOTO 320

REM E IS LESS THAN 1

A(1) =1

J = - 64

FORI =2 T0 7

J =J/2

IF E D> J TBEN A(I) =1 ELSEE =E - J
NEXT I

REM FCRM BINARY ARRAY FOR MANTISSA

J
FO =
J /2
IFMD> JTHEN A(I) =1 : M=M~-J

NEXT I

REM FORM HEXADECIMAL NUMBER AND QUTPUT IT
FORI = 2 TO 31 STEP 4

E = 8%A(I) + 4%A(I+1) + 2%A(I+2) + A(I+3)
PRINT MIDS (HS,B+1,1);

NEXT I

PRINT

GOTO 58 .

PRINT "00000000

GOTO 5@

I
IF D =
<
ABS
FI

8 TO 31

W= n

1
I
J

a) Decimal String to Am9511A Floating Point Format

Figure 4.5. Decimal to Binary Floating Point Conversion Programs
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10 REM

20 REM

33 REM

40 REM

5¢ TDEFINT A,I,H

60 DIM A(32)

70 H$ = "8123456789ABCDEF"

80 REM

9¢ REM CLEAR BINARY ARRAY A(g) TO A(31)
100 REM

116 FOR I = @ TO 31

120 A(I) = @

130 NEXT 1

140 REM

15¢ REM INPUT A DECIMAL NUMBER FROM CONSOLE
166 REM

170 PRINT .

18¢ INPUT "ENTER DECIMAL NUMBER";D

190 REM

20@ REM  CHECK IF INPUT NUMBER IS ZERO
210 REM

220 IF D <) @ TEEN 280

233 PRINT "00000000

249 GOTO 18@

250 REM

260 REM INPUT IS NOT ZERO, CHECK IF IT IS NEGATIVE
27¢ REM

28¢ IF D < @ THEN A(31) =1 : D = -D

250 REM

3@ REM FIND THE UNBIASED EXPONENT

210 REM

320 E
330 REM

340 REM FIND THE MANTISSA

35@ REM R

36@ M = D/2'E

370 REM

380 RIM FIND THE BIASED EXPONENT

3990 REM

400 E = E + 127

410 REM

420 REM FORM BINARY ARRAY FOR EXPONENT
420 REM

449 J = 256

45 FOR I = 3@ TO 23 STEP - 1

468 J = J/2

479 IF E >= J THEN A(I) =1 : E=E~-1J
48¢ NEXT I

490 REM

500 REM FORM BINARY ARRAY FOR MANTISSA
51¢ REM
520 M =
53¢ J =
54¢ FOR
550 J =
560 IF M
570 NEXT I

580 REM

59¢ REM FORM HEXADECIMAL NUMBER AND OUPUT TO CONSOLE
609 REM

61¢ FOR I = 31 TO @ STEP -4

€20 H = 8%A(I) + 4*A(I-1) + 2%A(I-2) + A(I-3)

638 PRINT MIDS (HS,H+1,1);

640 NEXT I

€50 GOTO 110

INT(LOG(D)/LOG(2))

-1 : REM STRIP OFF "HIDDEN 1"
22 T0 @ STEP -1
J THEN A(I)=1: M=M-1J

b) Decimal String to Am9512 Floating Point Format

Figure 4.5. Decimal to Binary Floating Point Conversion Programs (Cont.)
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19

20

30

40

50

60

70

80

S0

100
110
120
120
140
150
160
17¢
189
190
200
210
220
230
240
250
2€9
270
<280
290
300
310
320
330
340
350
360
370
380
390
400
410
42¢
430
440
450
460
479
480
490
5e¢e
510
520
538

REM
REM

REM

REM

DEFINT H,I,S : DIM H(8)

REM

REM INPUT BINARY FLOATING POINT IN HEXADECIMAL
REM

INPUT "ENTER AN 8 DIGIT HEXADECIMAL NUMBER";HS
REM

RgM UNPACK HEXADECIMAL NUMBER INTO A BINARY ARRAY
REM

FORI =9 T0 7

C$ = MIDS(HS$,I+1,1)

H(I) = ASC(CS)

IF (H(I) < 48 OR H(I) > 7¢) THEN 530

IF (E(I) > 57 AND H(I) < 65) THEN 53@

H(I) = H(I) - 48

IF B(I) > 9 THEN H(I) = H(I) -7

NEXT I

REM

REM FIND TEE SIGN OF THE NUMBER

REM

S =0

IF H(@) > 7 THEN S = 1

REM

REM FIND THE EXPONENT OF THE NUMBER

REM

E = 32%(H(@) AND 7) + 2%H(1) + (H(2) AND 8)/8 - 127
REM

REM FIND THE MANTISSA OF THE NUMRER

REM

H(Z2) = H(2) AND 7

M =1

FORI =2 T0 7

M =M+ H(I)/27(3+4%(1-2))

NEXT I

REM

REM FIND THE NUMBER BY COMBINING EXPONENT & MANTISSA
REM

N=(2"E) *M

REM

REM CHECK SIGN TO SEE IF NEGATION REQUIRED

REM

IF S = 1 THEN N = =N

REM

REM OUTPUT DECIMAL NUMERER

REM

PRINT N : GOTO 9¢

REM

REM ILLEGAL INPUT DETECTED, ABORT

REM

PRINT "INPUT ERROR, UNKNOWN CHARACTER “";C3%;"“" : GOTO 90

b) Hexadecimal Floating Point

Figure 4.5. Binary to Decimal Floating Point Conversion Program
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10

20

30

40

50

(51]

70

8¢

el

100
110
120
120
140
150
1€0
179
182
190
200
21¢
22e
230
240
250
2€9
278
280
269
300
210
320
339
240
350
3€EQ
370
380
390
400
410
420
420
440
450
4€E0
470
480
450
500
510
520
520
540
558

REM

REM

REM

DEFINT A,I

DEFCBL B-H,J-Z

DIM A(64)

H$ = '912345678SABCDEF" .

INPUT "ENTER DECIMAL NUMBER';D

REM CLEAR BINARY ARRAY

FOR I = @ T0 63

A(I) =0

NEXT I

IF D = @ THEN 540

IF D < @ THEN A(g) = 1

D = ABS(D)

REM FIND THE UNBAISED EXPONENT

E = INT(LOG(D)/LOG(2)) .
REM USE ITERATIVE LOOP TO FIND 2°E BECAUSE
REM EXPONENTIATION IS NOT EXACT T = 27E
T =1

IF E = @ THEN 329

IF £ > @ THEN 280

REM THE EXPONENT IS NEGATIVE

FOR I = -1 T0 E STEP -1

T =1T/2

NEXT I

GOTO 320

FOR I =1 70 E

T = 2%7

NEXT I

REM FIND TEE MANTISSA AND BIASED EXPONENT
M = D/T

E=E + 1023

REM FORM BINARY ARRAY FOR EXPONENT

J = 2048

FORI =1 TO 11

J =J/2

IF E D> J THEN A(I) =1 : E=E~-J
NEXT I

REM FCRM BINARY ARRAY FOR MANTISSA
M=M= 1#

J =1

FOR I = 12 TO 63

J =J/2

IFM > J THEN A(I) =1 :t M=M~-J
NEXT I

REM FORM HEXADECIMAL NUMBER AND OUTPUT IT
FOR I = @ T0 63 STEP 4

H = 8%A(I) + 4*A(I+1) + 2%A(I+2) + A(I+3)
PRINT MID$(H$,B+1,1);

NEXT I

PRINT

GOTO 89 )

PRINT ~@0@0000000000000

GOTO 89

¢) Decimal String to Am9512 Floating Point — Double Precision Format

Figure 4.5. Decimal to Binary Floating Point Conversion Programs (Cont.)
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18 REM
20 RIM

30 DEFDBL A-G,K-Z

35 LEFINT I,J

40 DIM C(16) w

5¢  INPUT "INPUT 16 DIGIT HEXADECIMAL NUMBER ";H$

€0 REM UNPACK EEXADECIMAL NUMBER INT A BINARY ARRAY
76 FOR I = @ TO 15

80 C$ = MID$(H$,I+1,1)

99 C(I) = ASC(CS) - 48

16@ IF C(I) < @ THEN 2S¢

11¢ IF C(I) > 1¢ TEEN C(I) = C(I) - 7
12¢ IF C(I) > 15 THEN 298

120 NEXT I

149 REM TFIND SIGN OF NUMBER

150 § = @

160 IF C(@) > 7 THEN S = 1
170 REM FIND EXPONENT OF NUMEER

180 E = 256*(C(@) AND 7) + 16%C(1) + C(2) - 1823
1560 REM FIND MANTISSA OF NUMBER

208 C(2) = C(2) AND 7

21 M = 1

228 FOR I = 3 T0 15

23 M =M + C(I)/27(4%(1-2))

248 NEXT I_

259 N = (27E) * M

260 IF S =1 THEN N = -N

27@ PRINT N

280 GOTO 5¢ .

29¢ PRINT "INPUT ERROR

30¢ GOTC 5@

c) Double Precision Decimal Number

Figure 4.5. Binary to Decimal Floating Point Conversion Program (Cont.)
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4.5 BINARY TO DECIMAL FLOATING POINT CONVERSION

In order to read the value of a binary floating point number stored
in a computer, it is often useful to convert it to a decimal number
s0 a person can visualize the number. The conversion from

The flowchart in Fig. 4.6 and the basic program in Fig. 4.7 illus-
trate an example of such a conversion. The following is a descrip-
tion of the variables used in the basic program:

- : ' ’ ; C$ — A single ASCIi character used during unpacking
binary to decimal is somewhat simpler than from decimal to of the input string.
binary. The following is an algorithm to convert a binary number E — The exponent of the binary floating point number.
into a decimal number: X . . . H(0)-H(7) — Each element of the array represents the value of
a. Unpack the binary floating point number into sign (S), un- each hexadecimal ASCII character entered. That
biased exponent (E) and mantissa (M). is, each element has the value 0 to 15.
b. Obtain the decimal value of the exponent using an integer H$ — The input string, which should be an 8-digit
binary to decimal conversion routine. ) . hexadecimal number. Characters entered after
c. Obtain the decimal value of the mantissa using a fractional the eighth character are ignored.
binary to decimal conversion routine. I — An integer used for loop index.
d. Obtain the decimal value using M — The mantissa of the binary floating point number.
(-1)Sx2ExM N — The decimal floating point number.
‘ START ’
INPUT HEX EXTRACT
ASCII STRING UNB'FA:gz EXP
H$ HEX ARRAY
UNPACK EXTRACT
HEX STRING MANTISSA
INTO HEX ARRAY FROM
H(0) - H(7) HEX ARRAY
DEFAULT =
SIGN = 0 @ E*M
N
Y
SIGN = 1 OU'I;‘PUT ’____I

MOS-642

Figure 4.6. Binary to Decimal Floating Point Conversion Flowchart
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16 REM

20 REM
32 REM
49 DIM C(8)

5¢ PRINT "INPUT 8 DIGIT HEXADECIMAL NUMRER: ";

60 INPUT 3¢

70 REM UNPACK HEXADECIMAL NUMBER INTO BINARY ARRAY
8¢ FORI =g T0 %7

S0 C$ = MIDS(HS,I+1,1)

160 REM CHECK IF INPUT IS ZERO

110 IF HS$ <> "00000p0@" THEN 148

12¢ PRINT "¢

13¢ GOTO 50

1408 C(I) = ASC(CS) - 48

159 IF C(I) < @ THEN 37¢

16¢ IF C(I) > 10 THEN C(I) = c(1) - 7
17@ IF C(I) > 15 THEN 379

18¢ NEXT I

190 REM CHECK IF INPUT IS NORMALIZEL
200 IF (C(2) AND 8) > @ THEN 238 .
210 PRINT "INPUT NOT NORMALIZED FLOATING POINT NO.
220 GOTO 5¢

23@ REM FIND SIGN OF NUMBER

40 S = @

250 IF C(@) > 7 THEN S = 1

26¢ REM FIND EXPONENT OF NUMBER

270 E = 1€%(C(@) AND 7) + C(1)

260 REM FIND MANTISSA OF NUMBER

290 M = @

200 FOR I = 2 T0 7_

316 M = M + C(1)/27(4%(1-1))

328 NEXT I_

33¢ N = (2"E) * M

340 IF S = 1 THEN N = -N

35¢ PRINT N

3€@ GOTO 5@ )

37¢ PRINT "INPUT ERROR

28e GOTO 50

Figure 4.7. Binary to Decimal Floating Point Conversion Programs
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CHAPTER 5
SINGLE-CHIP FLOATING POINT PROCESSORS

5.1 INTRODUCTION

Until recently, floating point computation has been implemented
either in software or in hardware with MSI/SSI (medium-scale
integration/small-scale integration) devices. The former method
involves considerable programming effort and the resulting pro-
ductis usually very slow. It also consumes valuable main memory
space for the floating point routines. The latter method involves
using hundreds of ICs, which requires considerable development
effort, and the resulting product is expensive to manufacture and
requires considerable power and space. With the advent of LS|
(large-scale integration) technology in recent years, it becomes
possible to put a complete hardware floating point processor into
a single IC.

The advantages of the single-chip LSI floating point processor
compared to previous hardware implementation are as follows:

Low development cost —

The cost of developing an interface to a single-chip floating
point processor should be less than 10 percent of the cost of
developing a complete hardware floating point processor.

Low production cost —

The cost of producing and testing of hardware floating point
boards is at least several hundred dollars whereas the cost of a
single-chip processor is only a small fraction of that cost.

Improved reliability —

Most electronic failures occur at the interface level. By com-
bining all the logic inside a single device, the number of con-
nections in the system is drastically reduced. Hence reliability
is increased.

Less power consumption —
The single-chip processor typically draws less than 5 percent of
the power of an MSI/SSI implementation.

Less space —

The single-chip processor usually fits on the same board as the
CPU, thus requiring one or two fewer boards than the MSI/SSI
solution.

Get product to market sooner —

Due to less effort required both for development and produc-
tion, using single-chip processors will shorten the design cycle
of a new product.

The advantages of the single-chip LSI floating point processor
over software floating point computation methods are:

Enhanced execution speed —

Hardware floating point processors typically execute floating
point arithmetic five to 50 times faster than software. If the
floating point processor allows concurrent CPU execution, the
overall throughput is even further enhanced for applications

*Z8000 is a trademark of Zilog, Inc.
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where the CPU can do other meaningful tasks during a floating
point computation.

Low development cost —

The cost of developing a comprehensive software floating point
package often involves many manmonths of programming ef-
fort. With a hardware processor, programming is drastically
reduced because the floating point computation algorithm is
precoded inside the hardware processor.

Less main memory required —

Since the floating point processors contain the computation
algorithm on chip (often in microcode), it could save a few
thousand bytes of main memory. This should be important in
applications where CPU has limited addressing space.

Improved portability —

With the advent of new microprocessors in rapid frequency,
software often must be rewritten when upgrading from one
CPU to another. When using the hardware processors, rewrit-
ing the floating point routines is eliminated.

The first LSI single-chip floating processors available commer-
cially were introduced by Advanced Micro Devices. AMD intro-
duced the Am9511 Arithmetic Processor unit in 1977 and the
Am9512 Floating Point Processor unit in 1979.

5.2 Am9511A ARITHMETIC PROCESSOR

This pioneer single-chip arithmetic processor interfaces with
most popular 8-bit microprocessors such as Am9080A, Am8085,
MC6800 by Motorola and Z80 by Zilog. It can also be used for
16-bit microprocessors such as AmZ8000,* but its performance
with such 16-bit microprocessors is somewhat hindered by its
8-bit external data bus.

Although the external interface is only 8 bits wide, the Am9511A
internally is a 16-bit microprogrammed, stack-oriented floating
point machine. It includes not only floating point operations but
fixed point as well. In addition to the basic add, subtract, multiply
and divide operations, transcendental derived functions are also
included. A data sheet of Am9511A is included in Appendix A.

5.3 Am9512 FLOATING POINT PROCESSOR

The Am9512 is a follow-up to the Am9511A. Althcugh the
hardware interface between the two chips is similar, the data
formats are different.

The Am9512 supports two data types: 32-bit binary floating point
and 64-bit binary floating point. The formats adopted are com-
patible with one of the proposed IEEE formats. Unlike the
Am9511A, the Am9512 does not have any of the derived trans-
cendental functions. A description of the Am9512 is included in
Appendix B.



CHAPTER 6
SOME INTERFACE EXAMPLES

6.1 INTRODUCTION

This chapter describes examples of interfacing some of the
popular microprocessors to the Am9511A and Am9512 single-
chip floating point processors. The examples given are for con-
ceptual illustration only, minor timing details may need to be
modified for systems running at nonstandard clock rates.

6.2 Am9080A TO Am9511A INTERFACE

Figure 6.1 illustrates a sample interface for an Am9080A 8-bit
microprocessor to an Am9511A. The system controller that inter-
faces to the Am9511A is an Am8238 and not an Am8228 because
the IOW (or MEMW) from the Am8228 will appear too late to put
the Am9080A into the WAIT state. This could cause possible
overwriting of Am9511A internal registers.

In the example illustrated, the CS input comes from an address
comparator Am25L.52521 (8-bit comparator). Note that the chip
select decoder must not be strobed with IOR or IOW, because
doing so will cause CS to go LOW after IOR or IOW went LOW.
The Am9511A chip select to read or write time has a minimum
setup time of 0. Strobing the chip select decoder will cause the
setup time to be negative and cause the Am9511A to malfunction.

Note that the Am9511 CS (but not the Am9511A) requires a
high-to-low transition for every read or write cycle. This means
that the address decode should be as explicit as possible to
guarantee a low-to-high transition on the address decode. In Fig.
6.1, only low-order address locations are used and an Am9080A
program cannot form a read/write loop in 2 bytes; a transition on
the address comparator is guaranteed. If using 4-bit comparator
instead of 7-bit comparator, the program could form a read/write
loop in 16 bytes. If the loop memory address always coincides
with the Am9511 1/O address, there will not be a transition on the
comparator output and the Am9511 will not function properly.
Although the Am9080A duplicates the I/O address on Ag-Ays,
these address lines should not be used for Am9511 address
decode because if the program is executing in a region where the
upper 7 bits of address match the Am9511 1/O port number, no
chip-select transition may occur.

The example shows an interrupt driven interface. At the end of
every Am9511A operation, the END signal goes LOW. This
causes the Am9080A to go into an interrupt-acknowledge se-
quence. Since the INTA on the Am8238 is pulled to +12V through
a 1K resistor, the data bus is pulled to all 1's during the interrupt-
acknowledge cycle. This generates an RST 7 instruction to the

SRt My = aiEe a

74LS04 En 47K
O—AAM———4
T 00— +5V
Am25L52521 —0— 0O
|— o0 ——
—o—0—
00—
Eout ]
AM9080A T
18MHz o cs END jo—
Ao cib
WR Jo—
HLDA
DBIN
L2 L2 l
Am8224 —
b2 b2 DBIN HLDA WR
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SYNC SYNC
Do.7 Do.7 DBo.7 DBg 7
READY READY -
RESET RESET AmB238
I0R Jo————————————=0 RD
RDYIN STSTB [o- STSTB oW fo—————————————=0] WR
b TTL 1K o 10K - .
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Figure 6.1. Am9080A to Am9511A Interface
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Am9080A. The Am9080A stores the current program counter on
the stack and jumps to location 38H to execute the interrupt
handling routine. By pulling the EACK HIGH, the END output will
stay LOW until the first read/write operation is performed on the
Am9511A, thus clearing the interrupt request.

6.3 Am9080A TO Am9512 INTERFACE

Figure 6.2 illustrates an example of interfacing the Am9512 to the
AMB9080A. The principal timing difference between the Am9511A
and the Am9512 is that the PAUSE follows RD or WR in the
AMY511A whereas the PAUSE follows CS in the Am9512.

Two additional gates (74LS08 and 74L.S32) are inserted in the
PAUSE to RDYIN line. Otherwise, during a memory cycle in
which the memory address bits 1to 7 match the I/O address of the
Am9512, the PAUSE will go LOW. Since there will be no IOR or
IOW in that cycle to reset the PAUSE, the system will be dead-
locked. The additional gates allow the PAUSE to pass through
only if the current cycle is an I/O cycle. Strobing the chip select
decoder with IOR or IOW will not work because that will create a
negative chip select to RD or WR setup time, which is not permit-
ted with the Am9512. Other considerations about the chip-select
decoding are the same as discussed in Section 6.2.

The 74L.S32 gate shown at the top of Figure 6.2 allows either END
or ERR to interrupt to CPU. The CPU can read the status register
of the Am9512 to determine the source of the interrupt.

6.4 Am8085A to Am9511-1 INTERFACE

In atypical Am8085A system, the system clock rate is 3MHz. The
Am9511-1 is selected because the Am9511-1 has as a maximum
clock rate of 3 MHz. The Am8085A has an earlier ready setup
window compared with the Am9080A. If the PAUSE signal is
connected directly to the READY input to the Am8085A, the ready
line will be pulled down too late for the Am8085A to go into the
WAIT state. The 74L.S74 is used for forcing one WAIT state when
the Am9511-1 is accessed. After the first WAIT state, the 74LS74
Q output is reset to HIGH and the PAUSE of the Am9511-1
controls any additional wait states if necessary. The chip-select
decoder is strobed with IO/M signal to prevent Am3g511-1 re-
sponding to memory accesses when bits 9 tqQ 15 of the memory
address coincides with Am9511-1 I/O address.

6.5 Am8085A TO Am9512-1 INTERFACE

The Am9512 is designed specifically to interface to
AmB8085A.The interface is straightforward and no additional logic
is required. The Am9512-1 is used instead of Am9512 because
the typical Am8085A system runs at 3 MHz.

The ERR output and END output are connected to separate
interrupt inputs so that the CPU can identify the souce of interrupt
without reading the status register of the Am9512-1.

Since the chip-select decoder is strobed with the |O/M signal, a
transition is guaranteed with each I/O operation without the con-
cern of insufficient address decode as in the Am9080A to
Am9511A or Am9512 interfaces.
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Figure 6.2. Am9080A to Am9512 Interface
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6.6 Z80 TO Am9511A INTERFACE

Figure 6.5 illustrates a programmed I/O interface technique for
Am9511A with a Z80 CPU.

The Chip Select (CS) signal is a decode of Z80 address lines
A1-A7. This assigns the Am9511A to two consecutive addresses,
an even (Data) address, and the next higher odd (Command)
address. Selection between the Data (even) and the Command/
Status (odd) ports is by the least significant address bit AO.

The IORQ (Input/Output Request) from the Z80 is an enable input
to the Am25LS139 decoder. The WR and RD from the Z80 are the
two inputs to the decoder. The outputs Y1 and Y2 are tied to WR
and RD of the Am9511A. The PAUSE output of the Am9511 is
connected to WAIT line of Z80. The Am9511A outputs a LOW on
PAUSE 150ns (max) after RD or WR has become active. The
PAUSE remains LOW for 3.5 TCY + 50ns (min) for data read and
is LOW for 1.5 TCY + 50ns (min) for status read from Am9511A
where TCY is the clock period at which Am9511A is running.
Therefore, Z80 will insert one to two extra WAIT states. The
AmM9511A PAUSE output responds to a data read, data write, or
command write request received while the Am9511A is still oc-
cupied (executing a previous command) by pulling the PAUSE
output LOW. Since PAUSE and WAIT are tied together, as soon
as Z80 tries to interfere with APU execution, Z80 enters the WAIT
state.

6.7 Z80 TO Am9512 INTERFACE

The Am9512 interface to Z80 (Fig. 6.6) requires two more gates
than the Am9511A interface to Z80. An inverter is added to the
interrupt request line because the sense of the END/ERR signals

are different. The 74LS32 is added in the wait line because the
Am9512 PAUSE will go LOW whenever chip select on the
Am9512 goes LOW. In Fig. 6.6 the chip-select input can go LOW
during second or third cycles of an instruction when the memory
address matches the Am9512 I/O addressed. If the 74LS32 OR-
gate is omitted, the WAIT input on the Z80 will go LOW and the
system will be deadlocked. Strobing the chip-select decoder will
not work because this would cause a negative chip selectto RD or
WR time on the Am9512.

The chip select decoder in this example is strobed with M1. This
accomplishes a dual purpose. It not only guarantees a chip select
transition on every I/O cycle, it also prevents the chip select to go
LOW during an interrupt acknowledge cycle. This is vital because
IORQ is also LOW during that cycle. Without the M1 strobe, CS
might go LOW and cause PAUSE to go LOW which will again
cause the system to deadlock.

6.8 MC6800 TO Am9511A INTERFACE

Figure 6.7 shows interface of a Motorola MC6800 microproces-
sor to an Am9511A. The MC6800 has no explicit I/O instructions.
All /O devices are treated as memory locations. Therefore the
chip-select input of the Am9511A is derived from a decode of
address lines A; to Ay5. The decoder is strobed by VMA (Valid
Memory Address) to produce a glitch-free output. The C/D input
of the Am9511A is connected directly to the Aq of the MC6800 so
that the even address selects the data port and odd address
selects the status or command port. The RD and WR inputs to the
Am9511A is derived by demultiplexing the 0, and VMA and the
R/W signals.
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Figure 6.5. Z80 to Am9511A Interface
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The Am9511A has a relatively long read access time. To read the
Am9511A data or status registers, the RD pulse to the Am9511A
must be stretched and the clock to the Am9511A clock must keep
running because the read access time is a function of the propa-
gation delay and the number of clock cycles. The MC6871A clock
driver chip provides a perfect solution to the problem. It has a
memory ready input to stretch the 0, HIGH time and a 2XFC
free-running clock output that is not affected by memory ready
input. The standard MC6800 uses a 1MHz clock so that 2XFC is
at 2MHz, which is the ideal frequency for an Am9511A. When a
CS to the Am9511A is decoded, the Am26S02 one-shot is
triggered to pull the memory ready line LOW for approximately
500ns. This allows the PAUSE output to take control of the
memory ready. The one-shot is necessary because PAUSE will
not go LOW soon enough to stretch out 0, in the current cycle.

Since the MC6800 is a dynamic device and the clock input must
not be stopped for more than 5 microseconds, the programmer
must not perform operations other than a status read while a
current command is still in progress. This avoids producing a
PAUSE output longer than 5 microseconds. The programmer
should check the status register to verify that the Am9511A is not
busy before performing any operation other than a status read.

6.9 MC6800 TO Am9512 INTERFACE

The MC6800 interface to Am9512 (Fig. 6.8) is somewhat simpler
than the MC6800 to Am9511A interface. All the discussions in
Section 6.8 also apply to this section except for the one-shot.

Since the PAUSE output from the Am9512 follows the CS instead
of RD or WR, the memory ready signal can be directly driven by
the PAUSE output. The only other addition is the inverter between
the END output of the Am3512 to the IRQ input.

The software considerations concerning the possibility of exces-
sive PAUSE time discussed in the previous section also apply to
the Am9512 interface.

6.10 AmZ8002 TO Am9511A INTERFACE

The Am9511A can also be interfaced to a 16-bit microprocessor
such as the AmZ8002. Since the data bus of the Am9511A is only
8 bits wide, the operations performed must be byte-oriented.

The RD and WR inputs to the AmS8511A can be obtained by
demultiplexing the data strobe (DS) output of the AmZ8002. The
data bus of the Am9511A can be connected to either the upper 8
bits or the lower 8 bits of the AmZ8002 data bus. If the Am9511A
data bus is connected to the upper 8 bits (Fig. 6.9), the 1/O
address of the Am3511A is always even. If the Am9511A data bus
is connected to the low 8 bits, the I/O address is always odd.
The chip select is derived from a decode of Ap to As. Aq is
used to select between data/status during READ and data/
command during WRITE.

Due to the long READ access time of the Am9511A, the AmZ8002
must be put in a WAIT state for each READ access to the
Am9511A. If the PAUSE output of the Am9511A is connected
directly to the WAIT input of the AmZ8002, the PAUSE output will
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Figure 6.8. MC6800 to Am9512 Interface
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arrive too late to put the AmZ8002 into the WAIT state. The
Am25LS195A 4-bit shift register is used to solve this problem.
During each address strobe, the Qp output will be forced LOW if
chip select to the Am9511A is present. The Qp will remain LOW
for two clock periods. If PAUSE is LOW during this period, the
WAIT line will remain LOW because the Am25LS195A is held at
the reset state. After the PAUSE returns to high the Qp output will
go HIGH after two clocks and the AmZ8002 can proceed with the
current operation. An alternative method of handling the PAUSE
line is use a one shot as in Fig. 6.7.

6.11 AmZ8002 TO Am9512 INTERFACE

The AmZ8002 to Am9512 interface is similar to the AmZ8002 to
Am9511A interface, except the PAUSE output of the Am9512 can
be connected directly to the WAIT input of the AmZ8002. This is
because the PAUSE output of the Am9512 follows the chip select
instead of RD or WR and the AmZ8002 has sufficient time to go
into the WAIT state. Figure 6.10 illustrates interfacing the Am9512
with the AmZ8002.
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CHAPTER 7
Am9511A INTERFACE METHODS

7.1 INTRODUCTION

Interfacing the Am9080A to the Am9511A can be accomplished in
one of the following ways:

1. Demand/wait

2. Poll status

3. Interrupt driven

4. DMA transfer

The various tradeoffs of these methods are discussed below.
Although only the Am9080A and Am9511A are used as an exam-
ple; the principle applies to any of the processors discussed in
Chapter 6.

7.2 DEMAND/WAIT

This interface is the simplest both in terms hardware and
software. The connection is shown in Fig. 6.1, except that the
interrupt input to the Am9080A need not be connected to the END
output of the Am9511A. When this interface is used, the pro-
grammer can regard the Am9511A as always ready for READ and
WRITE operations. If the Am9511A is not ready, the PAUSE will
go LOW to put Am9080A in the WAIT state. When the Am9511A
has completed the current operation, the PAUSE will go HIGH
and the suspended READ and WRITE will proceed. Figure 7.1
shows an example of a program that loads the data into the
Am9511A, executes a command and retrieves the data from the
AmM9511A.

The drawback of this method is that concurrent processing by the
CPU is not allowed, and the CPU also cannot respond to other
interrupts or DMA requests in the system while it is in the WAIT
state. In systems where above considerations are not important,
this would be the preferred method. This interface is not applica-
ble to MC6800 systems because the clock of the MC6800 may
not be stretched beyond 5 microseconds.

7.3 POLL STATUS

The hardware interface of this method is the same as demand/
wait. The software (Fig. 7.2) is slightly more complicated. When
the CPU wants to READ or WRITE to the Am9511A, the status
register is first read. If the most significant bitis a 1, the Am9511A
is executing a command. The CPU should refrain from perform-
ing any operation on the Am9511A except loop back for another
status read. When the MSB of the status is a 0, the Am9511 has
finished executing the command and the program can fall through
to perform a READ or WRITE to the Am9511A.

This method does not allow the CPU to perform useful concurrent
tasks, butit does allow the CPU to respond to interrupts and DMA
requests when it is in the status poll loop.

7.4 INTERRUPT DRIVEN

The hardware configuration of the interrupt driven method is
shown in Fig. 6.1. The CPU would first load the APU data stack
and then issue a command. During the command execution, the
CPU would be able to perform other useful tasks in the system.
When the Am9511A has finished the command, the END output
goes LOW to issue an interrupt request. When the interrupt
request is acknowledged by the CPU, the CPU executes a routine
to fetch from the Am9511A data stack and, if necessary, load up
the data stack and issue another command.

This method is most suitable for real-time multitasking systems
because concurrent execution of the CPU and APU is allowed.
Figure 7.3 shows an example interrupt handler for Am9511A.

32

7.5 DMA TRANSFER

If ultimate system performance is required, the Am9511A data
stack can be loaded and unloaded by a DMA controller such as
the Am9517. To achieve maximum throughput, two channels of
the Am9517 DMA controller are used in the configuration shown.
Channel 2 is used to load the Am9511A and channel 3 is used to
unload the Am9511 result into the main memory. For real-time
interrupt driven systems, an interrupt controller such as the
Am9519A should also be used. Figure 7.4 shows the connection
diagram of such a system and Fig. 7.5 shows a sample program
to drive such a system.

The following is the initializing sequence required only after
power up or system reset:

1. The Command Register
Bit 0 = Don't care (applies to memory to transfer option)
Bit 1 = Don't care (applies to memory option)
Bit 3 = 0, Enable DMA controller
Bit 4 = 0, Normal timing
Bit 5 = 1, Extended write
Bit 6 = 0, DREQ active HIGH
Bit 7 = 0, DACK active LOW
2. The mode register of channel 2:
Read mode, auto initialize, address decrement, block mode
3. The mode register of channel 3:
Write mode, auto initialize, address increment, block mode
4. The word count register of channel 2:
Initialized to a count of 8
5. The word count register of channel 3:
Initialized to a count of 4
6. Mask register:
Channels 2 and 3 cleared

The word count registers may need to be modified later if the word
count desired is not the default value.

The following is a sequence of operations required for each
Am9511A operation:

1. The operand address is written to the base address register of
channel 2 of the Am9517.

2. If the word count of the operand is different from the previous
operation, the new word count is written to channel 2 of the
Am9517.

3. The address of the result is written to the channel 3 base

address register.

. A software request is sent to channel 2.

. The CPU performs other tasks.

. Aninterruptis received from channel 2 end of operation signal.

. The CPU writes the command word into the command register

with MSB of the command word set to 1 to indicate DMA
service required at end of operation.

. The CPU is free to perform other tasks.

9. Aninterruptis received from channel 3 end of operation signal.
The result is now is the desired location in main memory.

NO O

[oe]

The above method offers maximum concurrent operation of an
AmM9080A and Am9511A system. If Am3511 or Am9512 is used
instead of Am9511A, the mode of transfer of the Am9517 must be
in single transfer mode to obtain a transition at the chip select
input of the Am9511 or Am9512.



LOC OBJ LINE SOURCE STATEMENT
14 PAGEWIDTH(8¢) MACROFILE NOOBJECT
>
z ; 3¢ o 3 e 3k ok o ok o o6 4 o 3k e e 25 o ok e o e i o e 3 o o o o e kol
4 3
5 3 PROGRAMS FOR CHAPTER 7 OF
6 3 FLOATING POINT TUTORIAL
P
8 ; 3 30NN 3638 NE 4 N8 N N E 38 E 3 3N 3 248 3 3 3N 348 3K 356 e 3 e HE K 36
9
10 NAME CHAP7
11
12 ; AMS511A ARITHMETIC PROCESSING UNIT
13 ; I/0 PORT ASSIGNMENT
14 ;
2eco 15 APUDR  EQU @C@H ;AMS511A DATA PORT
goC1 16 APU R EQU APUDR+1 $AM9O511A STATUS PORT
20C1 17 APUCR  EQU APUSR ;AM3511A COMMAND PORT
18 3
19 3 AM9517A MULTIMODE DMA CONTROLLER
20 ; 1/0 PORT ASSIGNMENT
21 3
20RO 22 DMAC EQU @B@H $AM9517A BASE ADDRESS
90B4 23 CH2ADR EQU DMAC+4 ; CHANNEL 2 ADDRESS
2085 24 CH2CNT EQU DMAC+5 sCHANNEL 2 BYTE COUNT
1231 25 CH3ADR EQU DMAC+6 s CHANNEL 3 ADDRESS
9087 26 CH3CNT EQU DMAC+7 3 CHANNEL 3 BYTE COUNT
@028 27 CMD17  EQU DMAC+8 3 COMMAND REGISTER
P@B9 28 REQ17 EQU DMAC+9 yREQUEST REGISTER
O0OBB 28 MOD17  EQU DMAC+@BH $MODE REGISTER
@@BD 3@ CLR17 EQU DMAC+@DH $MASTER CLEAR
@OBF 31 MSK17 EQU DMAC+@FH $MASK REGISTER
32 3
33 3 AM9519 UNIVERSAL INTERRUPT CONTROLLER
34 ; I/0 PORT ASSIGNMENT
35 j
90G2 36 UICDR EQU @C2H 3 AM9519 DATA PORT
20C3 37 UIC R  EQU UICDR+1 5AM9519 STATUS PORT
208C3 38 UICCR EQU UICSR s AMS519 COMMAND PORT
39 ;
40 CSEG
41 ;
42 ; PROGRAM EXAMPLE FOR DEMAND WAIT INTERFACE
43 ; *%kk%k FIGURE 7.1 ¥k
44
45 3 TO CALL THE FOLLOWING PROGRAM,
46 3 ON ENTRY:
47 3 HL = POINTER TO TPE FIRST OPERAND (NOS)
48 3 DE = POINTER TO THE SECOND OPERAND (TOS)
4G ; RC = POINTER TO THE RESULT
50 3 A = THE 2 OPERAND OPCODE
51
52 3 ON RETURN:
53 ; A = THE STATUS REGISTER OF AMS511A
54 ; ALL POINTERS ARE DESTROYED

Figure 7.1. Demand/Wait Programming

33




LOC OBJ LINE SOURCE STATEMENT

55 3
2020 C5 56 DEMAND: FUSH R ; SAVE RESULT POINTER
2001 F5 57 PUSH PSW 3 SAVE OPCODE
2002 210300 58 LXI B,3
2005 29 59 DAD B ;MOVE SOURCE POINTER TO LSR
60 ;
61 ; PUSH OPERAND #1 ONTO APU DATA STACK
62 ;
2006 2604 63 MVI B,4 5INIT LOOP1 COUNTER
2008 7E €4 DLOOP1: MOV A ,M sFETCH A RYTE FROM OPER 1
@069 T3CO €5 OUT APUDR ;PUSH ONTO APU DATA STACK
9008 2F 66 DCX H ;DEC. BYTE POINTER
200C 95 67 DCR B sDEC. LOOP COUNTER
@06D C20808 C 68 JNZ DLOOP1
69 ;
0212 EB 70 XCHG $PUT OPERAND 2 POINTER IN HL
9011 012300 71 ILXI B,3
2014 @9 72 DAD B sMOVE POINTER TO LSB
72 ;
74 PUSH OPERAND #2 ONTO APU DATA STACK
75 ;
2015 0604 7€ MVI B,4
9017 7E 77 DLOOP2: MOV A,M sFETCH A BYTE FROM OPER 2
9018 D3CQ 78 OUT APUDR ; PUSHE ONTO APU DATA STACK
@01A 2B 79 DCX H ;DEC. BYTE POINTER
2018 95 82 DCR B ;DEC. LOOP COUNTER
901C C21708 C 81 JNZ DLOOP2
82 ;
83 ; OPERAND LOAD COMPLETE, WRITE COMMAND
84 ;
@o1F F1 85 POP PSW SRETRIEVE COMMAND OPCODE
222¢ D3C1 86 CUT APUCR $WRITE TO APU COMMAND PORT
87 ;
88 ; READ DATA FROM STACK
89 ; IF THE APU IS NOT READY, THE PAUSE
90 ; SIGNAL WILL PUT AMO@S@A INTO THE
91 ; WAIT" STATE UNTIL THE DATA IS READY
92 ;
20922 C1 93 POP B SRETRIEVE RESUIT POINTER
0023 1E04 04 MVI E,4 3INIT LOOP3 COUNTER
@225 DBCO 95 DLOOP3: IN APUDR $READ APU STACK
2027 82 9€ STAX B ; STORE RESULT IN MEMORY
2028 23 o7 INX B
@829 1D 98 DCR E
@02 C22500 C 99 JNZ DLOOP3
100 ;
101 ; RETURN STATUS IN A
102 ;
@@2D DBC1 103 IN APUSR
@@2F C9 104 RET
105 % EJECT

Figure 7.1. Demand/Wait Programming (Cont.)
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Loc

00308
2031
0032
2035

2036
2038
2039

203C
PO3E
Q03F
2041
0042
0042

0046
2047
PC4A

0048
204LT
Q04
2058
2951
2052

255
2256

2958
2059

20858
005T
@@5E
0261

0BJ

€5

91¢30¢
29

DBC1
E7
FA3600@

2604

L3Co
2B

@25
C23E20

EB
910300
29

2604
7E
D3CO
2R

25
C24De@

F1
L3C1

C1
1E04

DEC1

FASRe@
F5

LINE

10€e
197
198
1089
110
111
112
113
114
115
116
117
118
118
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
13€
137
138
136
149
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
15¢
160

SOURCE STATEMENT

) e we we we

OLL: PUSH B
PUSH PSW
IXI B,3

DAD B
CHECK IF AM9511A

e R

HK1: IN APUSR
ORA A
JM CHK1

THE AM9511A IS R

)

MVI B,4
MOV A,M
OUT APUDR
DCX H

DCR

JINZ

PLOOP1:

B
PLOOP1

-e

XCHG
LXI B,3
TAD B

PUSH OPERAND #2

“e we e

MVI B,4
MOV A,L,M
OUT APUDR
ICX H

ICR B

JNZ PLOOP2

PLOOP2:

OPERANDS LOADED,

.o wo o

POP PSW
CUT APUCR

SET UP RESULT PO

“e e ee

POP B
MVI E,4

WAIT UNTIL AM951

) wo oo e

EK2: IN APUSR
ORA A
JM CHKZ2

PUSH PSW

THE AMO511A EAS

SUBROUTINE FOR POLL STATUS INTERFACE
wkik FIGURE 7.2 *%%&x

3 SAVE RESULT POINTER
3 SAVE OPCODE

yMOVE POINTER TO LSB

IS READY TO ACCEPT DATA
yREAT APU STATUS

$SET CPU FLAGS

3 LOOP BACK IF NCT READY

EAD IF FALLEN THROUGH

3 INIT LOOP1 COUNTER

sy FETCH FROM OPERAND 1
sPUSH ONTC APU DATA STACK
;DEC. BYTE POCINTER

;DEC. LOOP COUNTER

»PUT OPERAND 2 POINTER IN HL
iMOVE POINTER TO LSB

ONTO APU DATA STACK

7 INIT LOOP2 COUNTER
yFETCHE FROM OPERAND 2
yPUSH ONTC APU DATA STACK
;DEC. BYTE POINTER

yDFC. LOOP COUNTER

WRITE COMMAND

yRETRIEVE OPCODE
sWRITE COMMAND TO APU

INTER AND LOOP3 COUNTER

yRETRIEVE RESULT POINTER
3y INIT LOOPZ COUNTER

1A FINISE EXECUTION

READ APU STATUS PORT

y SET STATUS FLAGS

3y LOOP BACK IF NOT READY
7 SAVE APU STATUS

FINISEED EXECUTION

Figure 7.2. Status Poll Programming
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LOC O0BJ LINE SOURCE STATEMENT

161 3 READ RESULT

162 3
2@6z DBCO 163 PLOOP3: IN APUDR yREAD APU DATA STACK
a064 92 164 STAX B 3 STORE RESULT IN MEMORY
PeES B2 165 INX B s INC. MEMORY POINTER
2266 1D 166 DCR E 3 DEC. LOOP COUNTER
20267 C26220 c 167 JNZ PLOOP3

168 3

166 ; EXECUTION COMPLETE, RESTORE STATUS IN A

170 3
@o6A F1 171 POP PSW yRESTORE APU STATUS
@oEB C9 172 RET

1?73 % EJECT

Figure 7.2. Status Poll Programming Interface (Cont.)
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LoC

0238

2038
0029
233A
203B
923D

2049
0042
2043
2044
2045

o048
204A
204D
@04E
@04F
@a50

006G
296D
QO6E

POEF
0e72

@73
pa75

0BJ

F5

C5

E5
P64
2AQ000

DBCQ
77

23

25
C24000

3E@1
320200
k1

C1

F1

Cco

E5
D5
F5

1108090
19

DBC1
B7

LINE

174
175
176
177
178
178
180
181
182
183
184
18E
18€
187
188
189
190
101
192
192
194
195
19¢€
197
198
199
200
201
202
203
204
2085
20€
207
208
206
219
211
212
213
214
215
216

217

218
216
220
221
222
223
224
22¢
22€
227
228

e 0o wo s o o

“o e e

S we Ws e we W e e wo WO e wo e

 -e e e

SOURCE STATEMENT

SUERQUTINES FOR INTERRUPT DRIVEN INTERFACE
wiiokk FIGURE 7.3 %ok

LOCATE INTERRUPT HANDLER IN RST 7 LOCATION

ASEG

ORG 38H

PUSH PSW $SAVE ALL REGISTERS USED
PUSH B

PUSH H

MVI B,4 3 INIT LOOP COUNTER
LHID RSTPTR s FETCHE RESULT POINTER
IN APUDR READ RESULT FROM APU
MOV M,A ySTORE IT IN MEMORY
INX H y BUMP MEMORY POINTER
ICR B 3y DEC. LOOP COUNTER
JNZ ILOOP1

DONE, SET DONE FLAG AND RESTORE REGISTERS

MVI A,1
STA DONE
POP H
POP B
POP PSW
RET

SUBROUTINE TO LOAD APU STACK AND SEND
COMMAND WORD

CALLING SQUENCE:

ON ENTRY HL = POINTER TO MSB OF 8 BYTES
OF OPERAND

POINTER TO 4 BYTES OF RESULT
EXECUTION OPCODE

DE
A

ON RETURN: ALL REGISTER ARE NOT AFFECTED,
DONE FLAG CLEARED.

CSEG

PUSE H s SAVE OPERAND POINTER

PUSH D 3 SAVE RESULT POINTER

PUSH PSW ' SAVE OPCODE

LXI D,8 yOPER. OFFSET, E = LOOP2 CTR
DAD D iMOVE OPERAND POINTER TO LSB

CHECK AM9511A STATUS

IN APUSR yREAD AM9511 STATUS REG.
ORA A yTEST FOR BUSY

Figure 7.3. Interrupt Driven Programming
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LOC
oo76

2879
go7A
Qo7R
2e7D
ge7E

ges81
2e82
2084
oges?
2089
@08A
2087
@P8E
2e8F

2020
00082

ORBJ
FA?Z00

2B

7E
D3Co
1D
27909

F1
D3C1
21ez2es
3600
E1
220000
EB

E1

co

LINE

226
230
231
232
233
234
235
23€
237
238
239
240
241
242
243
244
245
246
247

248
248

250
251
252
253
254
255

et e e e

LooP2:

’
’
.
H

14
RSTPTR:
DONE:

%

SOURCE STATEMENT

JM LLOOP1

sWAIT UNTIL NOT BUSY

LOAD AMS511 STACK

ICX H

MOV A, M
CUT APUDR
DCR E

JNZ LLOOP2

POP PSW

OUT APUCR
IXI H,DONE
MVI M,@

POP H

SHLD RSTPTR
XCHG

PPH

RET

RAM AREA
LSEG
DS 2

DS 1
EJECT

sDEC. OPERAND POINTER

s FETCH 1 BYTE OF OPERAND
; LOAD APU DATA STACK
+DEC. LOOP COUNTER

iGET OPCODE
yWRITE TO APU COMMAND REG.

s CLEAR DONE FLAG

sGET RESULT POINTER

3 STORE IN RESULT POINTER
yRESTORE DE REG. PAIR

s RESTORE HL

sRESULT POINTER
s DONE FLAG, 1 = DONE

Figure 7.3. Interrupt Driven Programming (Cont.)
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ISIs-11 8e8¢/8085 MACRO ASSEMBRLER, V3.0 CHAP? PAGE 4

LOC OBJ LINE SOURCE STATEMENT
256
257 3 HIGE PERFORMANCE INTERFACE WITH
258 ; AM9517A AND AMS519
259 *k%%k FIGURE 7.4 ¥*%k%%
260 3
261 CSEG
262 ;
263 ; AM9517A INITIALIZATION ROUTINE
264 ; CALLING SEQUENCE:
265 ; NO PARAMETERS REQUIRED ON ENTRY.
26€ j SOURCE OPERANDS ASSUMED TO BE 8 RYTES AND
267 ; RESLUT OPERAND ASSUMED TO BE 4 BYTES
268
269 ON RETURNED: NO REGISTER AFFECTED
278 5
090 F5 271 INIT17: PUSH PSW 3 SAVE PSW
@291 D3BD 272 0UT CLR17 yMASTER CLEAR
2093 3E2P 273 MVI A,001000008B ; LOAD COMMAND WORD
2095 D3E8 274 0UT CMD17 s WRITE TO COMMAND REG.
9297 3EBA 275 MVI A,1£1110163 ;LOAD CH 2 MODE WORD
2099 D3RB 276 0UT MOD17 y INIT CHANNEL 2 MODE
@098 3E97 277 MVI A,10210111B ;LOAD CH 3 MODE WORD
099D D3BB 278 CUT MOD17 sINIT CHANNEL 3 MODE
P09F 3E@8 279 MVI A,8 yLOAD CH 2 BYTE COUNT
@2A1 D3BS 289 OUT CH2CNT s INIT CH 2 LOW BYTE COUNT
@OAZ AF 281 XRA A
?0A4 D3B5 282 OUT CH2CNT yINIT CH 2 EIGH BYTE COUNT
PPA6 3EC4 283 MVI A,4 1y LOAD CH 3 BYTE COUNT
@2A8 D3R7 284 OUT CH3CNT SINIT CH 3 LOW BYTE COUNT
QOAA AF 285 XRA A
@0AB D3B7 28€ OUT CH3CNT sINIT CH 3 HIGH BYTE COUNT
@0AD 3EQ3 287 MVI A,P0002011B ;LOAD MASK REGISTER PATTERN
POAF D3BF 288 0UT MSK17 s INIT MASK REGISTER
29B1 F1 28¢ POP PSW yRESTORE PSW
@0R2 C9 290 RET
291
292 ;3 SUBROUTINE TO INITIALIZE AM9519
293 ; CALLING SEQUENCE:
294 ; CN ENTRY: HL = STARTING ADDRESS OF WRITE
295 COMMAND SUBROUTINE
29€ 3 DE = STARTING ADDRESS OF SET
297 DONE FLAG SUBROUTINE
298 ON RETURN: NO REGISTERS ARE. AFFECTED
299 ;
B9B3 F3 309 INIT19: DI 7 DISABLE ALL CPU INTERRUPTS
@2B4 F5 301 PUSH PSW y SAVE PSW
@0B5 AF 302 XRA A
#0B6 D3CZ 303 OUT UICCR 7 SOFTWARE RESET AMS519Q
@2B8 3E88 304 MVI A,10021900B sMODE WORD FOR MO-M4
@@BA D3CZ 385 OUT UICCR s SET MO-M4
@9BC 3ECY 306 - MVI A,110000003B ; SELECT AUTO CLEAR REG
@OBE D3C3 307 OUT UICCR
@0Ca 3EB3 308 MVI A,00000011B ;SELECT CH @ & 1 FOR AUTO CLR
20C2 D3C2 309 OUT UICDR
02C4 3EBY 310 MVI A,101102000B ;SELECT MASK REGISTER

Figure 7.4. DMA Interface Programming
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ISIS-11 8¢80/8085 MACRO ASSEMBLER, V3.0 CHAP7? PAGE 8

LOC ORJ LINE SOURCE STATEMENT
20C6 D3C3 311 0UT UICCR
20C8 3EFC 312 MVI A,11111100B ;CLR CH @ & 1 MASK REG.
2@CA D3C2 313 OUT UICDR
22CC 3EF® 314 MVI A,11110000B ;SEL CHE @ FOR 2 BYTES
@OCE D3C3 315 OUT UICCR
20Dg 3ECD 316 MVI A,8CDH 79080A “CALL” OPCODE
#0D2 D3C2 317 CUT UICDR
ge04 7B 318 MOV A,E yGET CH @ LOW ADDRESS
@@D5 D3C2 319 OUT UICDR
@ep7 7A 320 MOV A,D 3GET CH ® EIGH ADDRESS
2208 D3C2 321 OUT UICDR
20DA 3EF1 322 MVI A,11110¢01B ;SEL CH 1 FOR 3 BYTES
2@DC D3C3 323 OUT UICCR
@@DE 3ECD 324 MVI A,@CDH 79088A “CALL” OPCODE
@0E® D3C2 325 0UT UICDR
@0E2 7D 32€ MOV A,L yGET CH 1 LOW ADDRESS
20E3 D3C2 327 CUT UICDR
@eES 7C 328 MOV A,H 3GET CH 1 HIGH ADDRESS
@@E6 D3C2 32¢ OUT UICDR
@QE8 3EAl 330 MVI A,10100001B ;ARM AM9518
@CEA D3C3 331 OUT UICCR
@C¢EC F1 332 FOP PSW +yRESTORE PSW
@OEL FB 333 EI y ENABLE CPU INTERRUPTS
2@EE C9 334 RET
335 ;
336 SUBROUTINE TO PERFORM AN EXECUTION WITH
337 8 BYTES OF OPERANDS AND 4 BYTES OF RESULT
338 3 CALLING SEQUENCE:
339 j 0O ENTRY: KL = ADDRESS OF OPERANDS
340 ; DE = ADDRESS OF RESULT
341 3 A = OPCODE
342 ON RETURN: ALL REGISTERS ARE NOT AFFECTED
343 ;
QOEF F5 344 EXEC: PUSH PSW 3 SAVE OPCODE
B2F2 322322 D 345 STA CPCODE y INIT OPCODE STORAGE
PBF3 AF 34€ XRA A
00F4 320400 D 347 STA DONE2 7 CLEAR DONE FLAG
@eF7? 7D 348 MOV A,L
@2F8 D3R4 349 0UT CH2ADR 3 INIT CH 2 LOW ADDR
@8FA 7C 350 MOV A,H
@2FB D3R4 351 OUT CHZADR s INIT CH 2 HIGH ADDR
@@FD 7B 352 MOV ALE
@PFE D3B6 353 CUT CH3ADR sINIT CH 3 LOW ADDR
2100 7A 354 MOV A,D
2101 D3B6 355 OUT CH3ADR y INIT CE 3 HIGE ADDR
2103 3EQ6 35€ MVI A ,00000110B
81065 D3B9 357 OUT REQ17 s SOFTWARE REQ TO CH 2
2107 F1 358 POP PSW s RESTORE PSW
2108 C9 356 RET
360 ;
361 j INTERRUPT BANDLER #1 TO WRITE COMMAND WORD
362 TO AM9511A WHEN AM9517A HAS FINISHED
363 LOADING THE OPERANDS
364 ; .
2109 F5 365 INTR1: ©PUSH PSW y SAVE PSW

Figure 7.4. DMA Interface Programming (Cont.)
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1sIs-I1 8@80¢/8285 MACRO

LOC ORJ LINE
P10A 3A0300 D 36€
210D D3C1 367
P10F F1 368
2110 FB 3€9
2111 C9 370
371
372
373
374
9112 F5 375
9113 3E@1 37€
0115 320400 D 377
9118 F1 378
2119 FB 379
@114 Co 280
381
382
383
384
385
0003 38€
P004 387
388
389

PUBLIC SYMBOLS

EXTERNAL SYMBOLS

USER SYMBCLS
APUCR A @0C1 APUDR
CH2CNT A @©B5 CH3ADR

CHK2 C 0058 CLR17
DLOOP1 C 9008 DLOOP2
DONE D @002 DONE2
INIT1?7 C 0090 INIT1S
LLOOP1 C 9@73 LLOOP2
MSK17 A Q@@RF OPCODE
PLOOP3 C 2062 POLL
RSTPTR D 0000 UICCR

ASSEMBLY COMPLETE, NO

ASSEMBLER, V3.0

.o wo we e

—o e e

’
OPCODE:

DONEZ:

POODOOO QD

P0C0o
p0B6
20BD
go17
2004
20B3
2079
2003
00302
20C3

ERRORS

1DA
ouT
POP
EI

RET

SOURCE STATEMENT

OPCODE
APUCR
PSW

CHAP? PAGE g

3 GET OPCODE

yWRITE TO COMMAND REGISTER
sRESTORE PSW

yRE-ENABLE CPU INTERRUPTS

INTERRUPT HANDLER #2 TO SET DONE FLAG
TO INDICATE OPERATION IS COMPLETE

PUSH PSW

MVI A,1

STA DONE2

POP PSW

EI

RET

RAM AREA

DSEG

DS 1

Is 1

END
APUSR A 00C1
CH3CNT A 00B7
CMD17 A @OB8
DLOOP3 C @025
EXEC C QOEF
INTR1 C 2109
LOAD C 2986C
PLOOP1 C QQ3E
REQ17 A @@BS
UICDR A 28C2

# SAVE PSW

7 SET DONE FLAG
s RESTORE PSW
sRE-ENAELE CPU INTERRUPTS

sAPU OPCODE SAVE AREA
» DONE FLAG

CH2ATR A Q0B4
CHK1 C 8836
DEMAND C 0990
DMAC A 0@B02
ILOOP1 A PP40
INTR2 C @112
MOD17 A QOBB
PLOOPZ C 024D
RST? A 0038
UICSR A 26C3

Figure 7.4. DMA Interface Programming (Cont.)
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CHAPTER 8
FLOATING POINT EXECUTION TIMES

8.1 INTRODUCTION

This chapter offers some numerical values of comparing execu-
tion times between Am9511A, Am9512 and their software coun-
terparts. The software packages selected are the Intel
FPAL LIB(R) fioating point library and the Lawrence Livermore
Laboratory BASIC (LLL BASIC). These two software packages
are selected because the Intel format is the same as the Am9512
single precision format and the LLL BASIC format is the same as
the Am9511A floating point format. This should offer a reasonably
comprehensive comparison.

In the execution-time cycles tables, the cycles given for the
Am9511A and Am9512 are from the issue of the command to the
completion of the command execution. The times for loading and
unloading the operands are not included because these times
depend on external hardware and also depend on whether the
calculation is a chain calculation. Similarly, the software cycles
are counted from the “Call” instruction to the “Ret” instruction of
the floating point package. Operand setup time is also not
counted.

The measurement is conducted on an Intel MDS 800(R) system
with an Advanced Micro Computers 95/6011 APU board and
95/6012 FPU board. The hostis a 2-MHz 8080A. The clock for the
95/6011 or 95/6012 board is derived from the 9.8304-MHz bus
clock divided by five to achieve a frequency of 1.96608 MHz.
Because the main memory of the MDS 800 is dynamic, there is
approximately +0.5% uncertainty of software timing measure-
ments. Because the bus clock is asynchronous to the CPU clock
and the internal clock of the Am9511A and Am9512 s atwo-phase
clock derived from the single phase bus clock, there is a =2-clock
uncertainty in the hardware measurements.

8.2 FLOATING POINT ADD/SUBTRACT
EXECUTION TIMES

Floating point add and subtract usually share the same routine.
Floating point subtract is merely a change of sign of the sub-
trahend and is performed as floating point add. For the sake of
discussion in this chapter, we assume the two operands are of
like signs. If the operands are different signs, the discussion
about addition will apply to subtraction and vice versa.

The execution time of floating point addition is mostly dependent
on exponent alignment time of the two operands, maximum of
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one shift would be required for post-normalization. If the addend
and the augend have the same exponent, no exponent alignment
time is required. If the magnitude of the addend and the augend
are fairly close, only a few alignment shifts are required. If the
addend and augend are very different, the number of required
shifts is large, hence longer execution time.

The execution time of floating point subtraction not only has the
same exponent alignment time as in the floating point addition, it
also has a post-normalization time. Like floating point addition,
the execution time lengthens as the magnitude of the minuend
diverges from the magnitude of the subtrahend. Unlike the float-
ing point add routine, the execution time also lengthens as the
subtrahend approaches the value of the minuend. This is due to
the number of left shifts required to produce a normalized result.

Table 8.1 shows the cycle times of Am9511A and LLL BASIC
floating point add and subtract routines. Table 8.2 shows the
cycle time of Am9512 and Intel floating point library execution
times. The software execution times given have been normalized
for a 2-MHz 8080A.

8.3 FLOATING POINT MULTIPLY/DIVIDE
EXECUTION TIMES

Unlike floating point add or subtract, the execution times of float-
ing point multiply or divide falls within a relatively narrow range
and is not dependent on the relative magnitudes of the operands.
Most multiplication algorithms use a shift and add method. For
such algorithms, the execution time dependency is mainly on the
number of 1's in the multiplier. The number of 1's in the multipli-
cand would not affect the execution time. The division execution
time dependency is more complicated because of the number of
division algorithms in use. In general, there is no simple way to
predict the division execution time of a particular pair of operands
(Tables 8.3 and 8.4).

8.4 DOUBLE-PRECISION FLOATING POINT
EXECUTION TIMES

The Am9512 supports a double-precision (64-bit) floating point
format. No known 64-bit floating point library routines are avail-
able at this time. Some sample execution times are given. The
operands are selected over a representative range to give a
comprehensive average (Tables 8.5 and 8.6).



TABLE 8.1. Am9511A vs LLL BASIC FLOATING POINT ADD/SUBTRACT EXECUTION TIME COMPARISON

OPERAND #1

DEC. HEX.
5 Q3A000C00
5 P3A00000
5 23A0002020
5 23A00000
5 03A000202
5 P3A0000¢2
5 23ACOCO0
5 Q3A00000
123 P7FEQ000Q
.123 7DFBE?6C
123 27FE0 000
12345 CECQPE420
1.3579 @1ADCFAA
.200012 73C9539A
234 ¢8EAQ0OQ
-1.224 819DF3B6

OPERAND #2
DEC. HEX .
.000€ 7€9D4951
.006 79C49BA4
.26 7CF5C28E
.€ 22999999

€ 0ZCo0009

62 @EFCovee
€00 2A960000
€000 @LBEBORD

456 @9F40000

456 09E40000

.456 7FEO?8D4
€789¢ 118499¢0
24€80 0FCeDooe
240000 13460402

-678 8AASRQR20O
12345 PECCE4 QO
TOTAL

AVERAGE

AMO511
FADL FSUB
214 228
179 192
143 15€

85 108

57 91
116 120
152 169
189 204
123 108
213 227
154 169
1¢6 131
238 253
344 347
118 96
238 229
26€0 2828
1€6.2

176.8 2858.5

LLIBASIC
FADD FSUB
3395 3884
3000 3506
2628 3088
2100 2578
1826 21085
2362 2281
2540 2805
2945 3186
2215 2137
3220 3467
2748 3241
2038 2462

. 3469 3727
4783 5025
2625 1920
289e 32€E7

45736 48777

3g48.€




TABLE 8.2. Am9512 vs INTEL FPAL LIB FLOATING POINT ADD/SUBTRACT EXECUTION TIME COMPARISON

OPERAND #1 OPERAND #2 AMGS512 FPAL.LIB

DEC. HEX. DEC. HEX. SADD SSUB FADD FSUB
5 42A00000 .0006 3A1D4952 254 275 2351 2568

5 42400000 .006 3BC49BA6 229 217 1914 2152

5 40A00000 .26 3D75C28F 171 178 2596 2724

5 40AC0000 .6 3F199994 o8 112 1954 2178

5 40A00200 6 42C00020 58 g 1430 1734

5 40ACOCO0 €0 4270000¢ 128 123 2002 2165

5 40ACOC00 €0e 441€60000C 169 177 2455 2712

5 40A 00000 6002 458880020 212 219 1866 2159
123 42F62000 45€ 43E4000CQ 114 129 1844 203¢
123 3DFBE76D 456 43E40000 264 283 2145 2424
123 42F600200 .456 3EE978D4 192 183 1651 1878
12345 4642E400 67899 47849920 114 142 1889 2279
1.3579 3FADCFAB 24680¢ 46C2D00OC 300 3e9 2435 2715
.000012 3749539k 340000 48160400 475 477 1953 2231
234 426A0000 -678 C429800@ 124 11 2155 1911
-1.234 BFODF2ER6 12245 4640CE400 284 297 2564 2284

TOTAL 3186 3296 33114 26158
AVERAGE 199.1 206 .8 2069.6 2259.4
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TABLE 8.3. Am9511A vs LLL BASIC FLOATING POINT MULTIPLY/DIVIDE EXECUTION TIME COMPARISON

OPERAND #1 OPERAND #2 AMS511 LLLBASIC

DEC. HEX. DEC. HEX. FMUL FDIV FMUL FDIV
5 03AC0000 0006 769D4951 174 157 8451 13013

5 D3AC0000 .06 79C49BA4 174 178 8441 12856

5 B3A00000 .06 7CF5C28E 149 177 8264 12867

5 23A00000 .6 20989999 174 157 8497 13302

5 02A00000 6 03C00000 173 178 8423 12835

5 A3A00000 ({4 2E6F00000 148 179 8218 12892

5 B3A00000 600 PA960200 173 155 8415 12214

5 23400000 €200 ¢DBB8P2Y 175 179 8437 1302¢
123 d7F 60000 456 @9E4N000 148 156 8939 12713
.123 7DFRE76C 456 POE40002 148 157 19948 13373
123 d7F60000 .45€ 7FEC78D4 149 155 8965 12878
12345 @ECOE40Q0 67890 11849900 173 157 9163 14395
1.3579 D1ADCFAA 24680 0FCeD0e0 147 179 19591 12149
000012 7@C9539A 240000 12460400 149 157 10018 13395
224 G8EARB0D0 -678 8AASBRO0 148 156 8781 13509
-1.234 819DF3R6 12345 CECPE409 175 178 12971 12952

TOTAL 2577 2655 145432 209273
AVERAGE 161.1 165.9 9089.5 13079.6
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TABLE 8.4. Am9512 vs INTEL FPAL LIB FLOATING POINT MULTIPLY/DIVIDE EXECUTION TIME COMPARISON

OPERAND #1 OPERAND #2 AMS512 FPAL.LIB

DEC. HEX. DEC. HEX. SMUL SDIV FMUL FDIV

5 40A00000 .0006 3A1D4952 234 25@ 3206 7757

5 40A00000 .926 3BC49BA6 256 235 3252 7908

5 40A00000 .26 3D75C28F 168 247 3088 7975

5 40A02000 .6 3F19999A 234 248 3245 7788

5 40A00000 6 49CC000¢ 229 232 3852 7955

5 40400000 €0 42700000 200 246 2897 7999

5 40A00000 600 44160000 220 248 3072 7799

5 4ZA0000 €200 45BESQOC 229 246 3137 7853
122 42F60000 456 43E40000 2e1 248 29083 7820
.123 3DFBE76D 456 42E400090 199 243 3087 78324
123 42F6000Q .456 3EES78D4 219 236 3072 7822
12345 4640E400 67890 47849900 242 249 2124 7585
1.2579 3FADCFAB 246882 46C0D200 253 249 3139 7854
.goeo12 37495393 340000 48160400 219 228 3131 7776
234 42600000 -€78 4298000 201 234 2925 7721
-1.234 BFSDF3B6 12345 4640E400 223 227 3314 7852

TOTAL 3529 2857 49644 128215
AVERAGE 221.2 241.1 31@02.8 7825.9
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TABLE 8.5. Am9512 DOUBLE PRECISION ADD/SUBTRACT EXECUTION TIMES

DEC.

o

(&)

OPERAND #1

HEX.
4014¢00000000000
4014000000000000
40140000000000230
4014000000000000
4214000000000000
4014000000000000
401402000000¢000
40140000000¢C000
405EC0200000002000
3FBF?7CED916872B2
405EC 00200000000
40C81C800000¢000
3FFS5ROF559B3D@7C
3EES2A727110E453
406T400000000020
BFF3BE76C8B43958

OPERAND #2

DEC. HEX.
. 9006 3F43A92430553261
.0e6 3F789274BC6A7EF9
.26 SFAEBB851ER851 EBS
.6 3FE33333333233333
6 401800000000000¢
€0 4¢4E000000000000
€0e 4082C000002000000
€000 40R77000000C0000
456 4¢7(C800000002000
456 4070800200002 000
.45€ 3FDD2F1A9FRE76(8
67890 40F 0932000000000
24680 40DB1A200CN00B00
342000 4114C08000000000
-€78 C285300020000000
12345 40081C8000000002
TOTAL
AVERAGE

AMGS512
DADD DSUB
1273 1310
1174 1211
1038 1105
868 891

720 773
951 922
1¢91 1107
1229 1244
906 877
1233 128¢
1072 1103
907 960
1322 1352
2158 2232
914 861
1329 1290
18165 18518
1135.3 1157.4
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TABLE 8.6. Am9512 DOUBLE PRECISION MULTIPLY/DIVIDE EXECUTION TIMES

DEC.

(€N S IS IS N & L N G I e

12345
1.3579
.200012

OPERAND #1

EEX.
4014920000000000
4014200000000000
4214000000000000
40140000000000920
4014000200000¢00
4014000000000020
401402000000000¢
4014020000002000
405ECE0000002000
ZFBF7CED916872R%
405ECC2000000200
4¢08108000020¢20
3FF5ROF55SB3L07C
3EEG2A7371102E453
40610400000020000
BFF3RE7EC8B43958

OPERAND #2

DEC. HEX.
.0¢26 3F43A92A30553261
. 006 3F789374BC6A7EFS
.26 3FAEBR51EB851ERS
.6 3FE3333333333332
6 40180000000022000
€e 424T00002C0000200
6¢e 4p820002000000200
€0¢0 40B7700000200208
456 40708200¢2002000¢
456 407C8002022000200
.456 3FDD2F1A9FEBEVECS
67890 4¢F0032000000000
24680 40D81AQ002203022
34000 4114C08002000200
-678 CP85300020¢0202¢0
12345 40(81C8002000000¢
TOTAL
AVERAGE

AMG512
DMUL DDIV
18182 4857
1814 4983
1779 5048
1841 5027
1785 4700
1751 4699
1787 4618
1786 4782
1750 4671
1756 4748
1744 4936
1807 4€96
1762 4788
1755 4764
1759 467@
1822 4768

28479 7€655

1779.8 4792.¢8
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CHAPTER 9
TRANSCENDENTAL FUNCTIONS OF Am9511A

9.1 INTRODUCTION

The word ““transcendental” is defined as “a function that cannot
be expressed by a finite number of algebraic operations.” Three
examples of such functions are sine, logarithmic and exponentia-
tion. The Am8511A performs a number of such functions, and this
chapter describes the algorithms adopted by the device.

9.2 CHEBYSHEV POLYNOMIALS

Computer approximations of transcendental functions are often
based on some form of polynomial equations, such as

f(x) = ag + ajx + apx® + agx® + agxd + ...

The most well-known polynomial for evaluating transcendental
functions is the Taylor series

(a) (X — a)k
k!

Where fk(a) is the kth derivative of the function f. Taylor series
usually works well when (x — a) is a small number. When the
value of (x — a) is large, the number of Taylor series terms
required to evaluate to a given accuracy becomes large. The
primary shortcoming of an approximation in this form is that it
typically exhibits very large errors when the magnitude of | X | is
large, although the errors are small when | X | is small. With
polynomials in this form, the error distribution is markedly un-
even over any arbitrary interval. To avoid this shortcoming, there
is a set of approximating functions that not only minimizes the
maximum error but also provides an even distribution of errors
within the selected data representation interval. These are
known as Chebysheve polynomial functions and are based
upon the cosine functions. The Chebyshev polynomials T(x) are
defined as follows

f(x) = f(a) +

Th(x) = cos(ncos ~'x)
The various terms of the Chebyshev series can be computed as

To(x) = cos(0) = 1

Ty(x) = cos(cos~1x) = x

To(x) = cos(2cos~'x) = 2cos2(cos~1x) —1 = 2x2 — 1
in general, the next term in the ‘C’ series can be recursively
derived from the previous term as the following: —

Talx) = 2x(Th—1(x)) — T_o(x) forn = 2
the terms Ty(x), Ty(x), Ts(x) and Tg(x) are given below for
reference

Ta(x) = 4x3 — 3x

Ta(x) = 8x4 — 8x2 + 1

Tg(x) = 16x5 — 20x3 + 5x

Te(x) = 32x6 — 48x4 + 18x2 — 1
It is not the intent of this book to go into the detailed derivation of
the Chebyshev series. For readers interested in the formal deri-

vation, references 1 and 3 are recommended. The Chebyshev
series is given as follows:

) =5Co + 3 CaTa(x)
n=1
where
2 M f(x) Tp(x)
Cn = __7;—‘[*1 \/1 - X2

For a given accuracy, only a finite number of terms is required.

The Am9511A selects the number of terms required by different
functions to provide a mean relative error of about one partin 107.
The coefficients C,, are all precaiculated and stored in the con-
stant ROM.

Each of the transcendental functions in the Am9511A uses the
Chebyshev polynomial series except the square root function.
Each function is a three-step process as follows:
Range Reduction —
The input argument of the function is transformed to fall within a
range of values for which the function can be computed to a
valid result. For example, since functions like sine and cosine
are periodic for multiples of radians, input arguments for these
functions are converted to lie within a range of

s s
Otonwor —2—to+—2——

Chebyshev polynomial evaluation —

This step is the same for all functions. The algebraic sum of
the appropriate number of terms of the Chebyshev series is
computed.

Postprocessing —

Some functions, such as sine and cosine, need postprocessing
of the result such as sign correction.

The following sections give a detailed function-by-function de-
scription of each transcendental function in the Am9511A.

9.3 THE FUNCTIONS CHEBY AND ENTIER

Two functions are used in the following sections. The first one is
CHEBY. This function evaluates the Chebyshev polynomial
series n—1

f(x) = 12Cy + ¥

CkTk(x)

The function is called by CHEBY (x, c, n) where x is the input
argument after any necessary preprocessing; c is the coefficient
list for the given function; and n is the number of Chebyshev
polynomial terms used.
The FORTRAN program to implement the cheby function is as
follows:

FUNCTION CHEBY (X, C, N)

Dimension C(12), T(12)

T) =1

T@) = X
CHEBY = 0.5 * X(1) + C(2) * T(2)
DO 1001 =3, N

Th=2*X*T(=1)-T(1-2)
100 CHEBY = CHEBY + C(I) * T(l)
This program is not written to minimize execution time or code
space but for its clarity. A program thatimproves execution speed
but is somewhat more obscure is as follows:

FUNCTION CHEBY (X, C, N)
DIMENSION C(12), T(12)

B=0

D = C(N)
X2=2*X

DO 1001 = N, 2, —1
A=B

B=D

100D =X2*B - A+ C(l - 1)
CHEBY = (D — A)2
END



The second function is called ENTIER. Entier is the French word
for integer. The entier function is similar to the FORTRAN integer
function, except the integer function rounds down to the nearest
integer closer to zero whereas the entier function rounds down to
the nearest integer of a lower value. In other words, if the number
is greater than or equal to zero, both functions are identical. If the
number is negative, such as —2.5, INT (-2.5) = —2, ENTIER
(—2.5) = -3.
A FORTRAN program to implement the entier function is as
follows:

FUNCTION ENTIER (X)

IF(X.LT.O) X =X -1

ENTIER = INT (X)

END

9.4 SINE
Any argument of the sine function can be reduced to a value from
—m/2 to +a/2. Hence the range reduction is

X=X*2/w

X = X — 4 * Entier (X + 1)/4)

FXGTAH)X=2-X
This reduces the input argument to a range from —1to +1. The
Chebyshev polynomial evaluation is

Sin (X) = X * CHEBY (2X2 — 1, Csin, Nsin)
there Csin is an array of precalculated Chebyshev coefficients for
sine, and Nsin is the number of Chebyshev polynomial series
used. In the case of AM9511A

Nsin = 6

Csing = 2.5525579

Csiny = ~0.2852616

Csin, = 9.118016 x 1073

Csing = —1.365875 x 104

Csing = 1.184962 x 1076

Csing = —6.702792 x 109

10°

10‘2 -

",—4 -

RELATIVE ERROR

1078

| L 1 | |
0 20 10 0

1078

_1010

10710 10" 10 10'°

DATA VALUES (RADIANS)

-10

MOS-008

Figure 9.1. Sine

9.5 COSINE

Any argument of cosine function can be reduced to a range from 0
to . Hence, the formulas for cosine range reduction are

X =X*2/r

X = 4 * Entier (X + 2)/4) — X + 1
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If (X.GT)X = 2 — X

The cosine function is now evaluated the same way as the sine
function

cos(x) = X * CHEBY (2x2 — 1, Csin, Nsin)
where Csin and Nsin are the same as the sine function

RELATIVE ERROR
3

—8 1 ! L . 1 |
10 20

—10~ 10” 10710 10 10'°
DATA VALUES (RADIANS)

—10°

MOS-009

Figure 9.2. Cosine

9.6 TANGENT

Any argument for tangent can be reduced to a value from —#/2 to
+m/2. This is the same range reduction algorithm as the sine
function (Figure 9.4).

X =X*2/x
X = X — 4 * Entier (X + 1)/4)
Y =X

f(YGT )X =2 - X
The Chebyshev polynomial evaluation is
Tan(X) = X * CHEBY(2X? — 1, Ctan, Ntan)
A postprocessing step is also required
If (Y.GT.1)Tan(X) = 1/Tan(X)

RELATIVE ERROR
3

10—5 —

- L | J
20 10 0

s 1 !

10

10

—10'"° -10° -1~ 107 10” 10'°

DATA VALUES (RADIANS)
MOS-010

Figure 9.4. Tangent



The constants used in the Am9511A are as follows:

Ntan = 9
Ctang = 1.7701474
Ctan; = 1.0675393 x 10~'

Ctan, = 7.5861016 x 1073
Ctang = 5.4417038 x 104
Ctany = 3.9066370 x 1072

Ctang = 2.8048161 x 10~6

Ctang = 2.0137658 x 10~/

Ctan, = 1.4458187 x 108

Ctang = 1.0380510 x 109
9.7 ARCSINE

The argument of arcsine must be less than or equal to 1, or
else an input error is detected. Hence, range reduction is not
necessary.
There are two different Chebyshev polynominal expansion used
depending on the initial value of X. If X2 < 1/2 then the following
formulais used

Asin(X) = x* 2 * CHEBY (4x2 — 1, Casin, Nasin)

If 1/2 < x2 < 1 then

Asin (X) = sign (X) * 5= * /2 - 2x2*
CHEBY (3 — 4x2, Casin, Nasin)
Where sign (X) is the sign of X. The values of Casin and Nasin
used in the Am3511A are as follows:
Nasin = 10
Casing = 1.4866665

Casin, = 3.8853034 x 102
Casin, = 2.8854414 x 103
Casing = 2.8842183 x 10~4
Casiny = 3.3223672 x 1073
Casing = 4.1584779 x 10~6
Casing = 5.4965045 x 107
Casin, = 7.5500784 x 108
Casing = 1.0671938 x 10~8
Casing = 1.5421800 x 10~

—6

RELATIVE ERROR
3
T

1078 L L J
-10 ‘0720 '0“10 100
DATA VALUES

-10° -10

MOS-011

Figure 9.3. Inverse Sine
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9.8 ARCCOSINE

The arccosine is obtained from arcsine by using the trigonometric
identity.

Arccosine (x) = % — arcsine (x)

1078

RELATIVE ERROR
3
|
<

M

108 I L 1 |
20 10

—10" ~10 10~

DATA VALUES

10~ 10

MOS-012

Figure 9.5. Inverse Cosine

9.9 ARCTANGENT

The range reduction of the arctangent function involves taking the
reciprocal of the input argument if the absolute value of the input
argument is greater than 1.

U=X
If (ABS (U).GT.1)X = 1/X

The Chebyshev polynomial evaluation is

Atan(X) = X * Cheby(2X2 — 1, Catan, Natan)

The postprocessing requirement is

If (U.GT.1) Atan (X) = =/2 — Atan (X)
If (ULT.—1) Atan (X) = —=/2 — Atan (X)

The value of Natan and Catan used in the Am9511A are:

Natan = 11
Catang = 1.7627472
Catany = —1.0589292 x 10~!
Catan, = 1.1135842 x 1072
Catang = —1.3811950 x 103
Catan, = 1.8574297 x 104
Catang = —2.6215196 x 1075
Catang = 3.8210366 x 106
Catan, = -5.6991862 x 10~/
Catang = 8.6488779 x 108
Catang = —1.3303384 x 10~8
Catany, = 2.0685060 x 10~9
Catanyy = —3.2448600 x 10~ 10



~6

10

RELATIVE ERROR
3

L | 1 |

20 _101 e _10710

107

20 10*10

DATA VALUES

MOS-013

Figure 9.6. Inverse Tangent

9.10. EXPONENTIATION (Figure 9.7)
The range reduction for the exponentiation function is performed
by the following formulas

X = X * Logoe

N = 1 + Entier (X)
The Chebyshev polynomial evaluation is

Exp(X) = 2N * Cheby (2*(N — X) — 1, Cexp, Nexp)
No postprocessing is required for the exponentiation function.
The values of Nexp and Cexp used by Am9511A are:

Nexp =8

Cexpg = 1.4569999

Cexpy = —2.4876243 x 101

Cexp, = 2.1446556 x 1072

Cexpy = —1.2357141 x 1073

Cexpy= 5.3453058 x 1075

Cexps = —1.8506907 x 108

Cexpg = 5.3411877 x 1078

Cexpy= —1.3215160 x 109

1078

—7

RELATIVE ERROR
3

-8 | 1 L |
10 _10° 10

10

10*20

~10” 10710

DATA VALUES

-10

Figure 9.7. ex
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9.11. NATURAL LOGARITHM (Figure 9.8)

Any input argument to a logarithm function that is less than or
equal to zero will be returned as an error input. No preprocessing
or postprocessing is necessary for all positive input X.

LN(X) = CHEBY (4*Mant(X) — 3, CLN, NLN) + (Expo(X) — 1)
*LN2

Where Mant(X) is the mantissa value of X and expo (X) is the
exponent value of X.

The value of NLN and CLN used in the Am9511A are:

NLN - =11

CLNy = 7.5290563 x 10~
CLN, = 3.4314575x 107!
CLN, = -2.9437253 x 1072
CLN; = 3.3670893 x 1073
CLN, = —4.3327589 x 1074
CLN; = 5.9470712x 1075
CLNg = —8.5029675 x 1076
CLN; = 1.2504674 x 106
CLNg = —1.8772800 x 107
CLNg = 2.8630251 x 1078
CLNjg = —4.4209570 x 1072

9.12 LOGARITHM TO BASE 10 (COMMON LOGARITHM)

The common logarithm is derived from the natural logarithm by
the equation

LOG(X) = LN(X) * LOGyge
where
LOGyge = 0.4342945

9.13 X TO THE POWER OF Y

The function X to the power of Y is derived from the following
equation
XY = e(Y*LN(X))

9.14 SQUARE ROOT

The square root function (Figure 9.9) in the Am9511A is the only
derived function that does not use the Chebyshev polynomials. It
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ABSOLUTE ERROR
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DATA VALUES

10°

MOS-014
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-7 -

RELATIVE ERROR
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Figure 9.8. Natural Logarithm

uses a combination of linear approximation and the Newton-
Ralfson successive approximation methods. The square root
algorithm adopted is divided into three parts:

(a) Range reduction —
The input argument is divided into the exponent and the
mantissa. If the exponentis odd, the exponentis incremented
by 1 and the mantissa is divided by 2. If the input exponent is
even, the above step is skipped.

(b

Linear Approximation —

The mantissa is now a number greater than or equal to 1/4
and less than 1. The curve line in Figure 9.10 represents the
square root of all numbers between 1/4 and 1. The straight
line represents the first-order approximation for the square
root of the number. To select the best straight line, we must
minimize the maximum relative error between the straight
line and the curve line. This would reduce the worst case error
to a minimum. This line is known as the minimax line.

The method used to compute the best linear approximation line is
as follows:

Let m = Slope of the minimax line
Let b = Y intercept of the minimax line
LetY The function of the minimax line

such that

Y =mx +b
The relative error between the actual square root value and the
first-order approximation is
mx +b - /X
X
Figure 9.10 shows that the absolute value of E(x) is a maximum at

the two extremities (x = 1/4 and x = 1) and at a point where the
slope of the curve E(x) = 0, or dE/dx = 0.

E(X) =

dE_ d (mX+b-—/x)
dX  dX /X ©-1)
d ! d 1 d
= — mx + — bx -— (1
dx 2 dx 2 dx "
_ d 1 d 1
—m—ax—xz + ba X 2 -0

Figure 9.9. Square Root

- _;_mx—vz _ _;_bx—s/z -0
therefore
mx12 = px—3/2
- b

The relative errors at the extremities are given by

E (%) _T____\/%_

1+b_..1__
_ 4 2
1
2
- m _
—2+2b 1 (9.2)
. m+b-J/1
> (1) =m+b -1 9.3
T (9.3)

The minimax line requires these maximum errors to be equal

M i 2b-1=m=+b-1

2

b- M=o
2
b 1
2 - L 9.4
m 2 (9-4)
m = 2b (9.5)

from equations 9.1 and 9.4

b 1

X == = —




Therefore, the maximum error in the middle occurs when X = 1/2.
The minimax line requires these errors to be equal in magnitude.
Thus

() - e - <)

I
m
i

1 _nzl th- \/-g 9
ez -——
A
Ve
Since m = 2b from equation 9.5
1 2 - \/%
E(-z-) - 9.7)
JE
From equations 9.3 and 9.5
E(1)=3b -1 (9.8)

From equations 9.6, 9.7 and 9.8

2b—\/;:=—(3b—1)=173b
\/I

2
/2 b -

b = —2 - 0.34314575

2/2+3
From 9.5
m = 2b = 0.6829150
Therefore, the minimax line is given by
Y = 68629150 X + 0.34314575

This is the equation used in Am9511A for the first-order linear
approximation. Therefore

2 1=1-3b

(c) Newton-Ralfson successive approximation —
After the first-order approximation (Xg) is obtained, the
Am9511A executes two iterations of the Newton-Ralfson ap-
proximation

Xy = (XX + Xo)/2
X2 = (X/X1 + X1)/2

And the result is given by
SQRT(X) = x, * 2E/2

A FORTRAN function to illustrate the above algorithm is given
below:

FUNCTION ROQT (X)
INTEGER EXPO, LSB
REAL MANT, X0, X1, X2
EXPO = INT (LOG(X)/LOG(2)) + 1
MANT = X/2**EXP
LSB = MOD(EXPO, 2)
IF (LSB.EQ.0) GOTO 100
C EXPONENT IS ODD
EXPO = EXPO + 1
MANT = MANT/2.0
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100 X0 = 0.68629150* Mant + 0.34314575
X1 = (X/X0 + X0)/2.0
X2 = (X/X1 + X1)/2.0
Root = (2**(EXPO/2))*X2
End

AN

-
o

SQRT (X) —
v o

0294

°
E(X) —

.0294

Figure 9.10. Square Root Computation

9.15 DERIVED FUNCTION ERROR PERFORMANCE

Since each of the derived functions is an approximation of the true
function, results computed by the Am8511A are not always exact.
In order to quantify the error performance of the component more
comprehensively, the following graphs have been prepared.
Each function has been executed with a statistically significant
number of diverse data values, spanning the allowable input data
range, and resulting errars have been tabulated. Absolute errors
(that is, the number of bits in error) have been converted to
relative errors according to the following equation:

Absolute Error

Relative Error =
elative Erro True Result

This conversion permits the error to be viewed with respect to the
magnitude of the true result. This provides a more objective
measurement of error performance since itdirectly translates to a
measure of significant digits of algorithm accuracy.

For example, if a given absolute error is 0.0001 and the true result
is also 0.0001, itis clear thatthe relative error is equal to 1.0 (which
implies that even the first significant digit of the result is wrong.
However, if the same absolute error is computed for a true resuit
of 10000.0, then the first six significant digits of the result are
correct (0.001/10000 = 0.0000001).

Each of the following graphs was prepared to illustrate relative
algorithm error as a function of input data range. Natural
logarithm is the only exception; since logarithms are typically
additive, absolute error is plotted for this function.

Two graphs have not been included in the following fig-
ures: common logarithms and the power function (XY). Common
logarithms are computed by multiplication of the natural
logarithms by the conversion factor 0.43429448 and the error
function is therefore the same as that for natural logarithm. The



power function is realized by combination of natural log and REpwRr = REgxp + X(AE),)

exponential functions according to the equation where
Y _ Lyin(x . .
XY = g¥in®) REpwg = relative error for power function
The error for the power function is a combination of that for the REgxp = relative error for exponential fu-nction
logarithm and exponential functions. Specifically, the relative AEj, = absolute error for natural logarithm
X = value of independent variable in XY

error for PWR is expressed as

REFERENCES

3. Parker, Richard O. and Joseph H. Kroeger. Algorithm Details
for the Am9511A Arithmetic Processing Unit. Advanced Micro

Devices, 1978.

1. Pennington, Ralph H. Introduction to Computer Methods and
Numerical Analysis. Macmillan Company, 1970.

2. Clenshaw, Miller and Woodger. “Algorithms for Special Func-
tions (I and Il),” Numerische Mathematic, 1963.

56



Appendix A






AMOST1A

Arithmetic Processor

DISTINCTIVE CHARACTERISTICS

2, 3 and 4MHz operation

Fixed point 16 and 32 bit operations

Floating point 32 bit operations

Binary data formats

Add, Subtract, Multiply and Divide

Trigonometric and inverse trigonometric functions
Square roots, logarithms, exponentiation

Float to fixed and fixed to float conversions
Stack-oriented operand storage

DMA or programmed I/O data transfers

End signal simplifies concurrent processing
Synchronous/Asynchronous operations

General purpose 8-bit data bus interface
Standard 24 pin package

+12 volt and +5 volt power supplies

Advanced N-channel silicon gate MOS technology

GENERAL DESCRIPTION

The Am9511A Arithmetic Processing Unit (APU) is a monolithic
MOS/LSI device that provides high performance fixed and
floating point arithmetic and a variety of floating point
trigonometric and mathematical operations. It may be used to
enhance the computational capability of a wide variety of
processor-oriented systems.

All transfers, including operand, result, status and command
information, take place over an 8-bit bidirectional data bus.
Operands are pushed onto an internal stack and a command
is issued to perform operations on the data in the stack. Re-
sults are then available to be retrieved from the stack, or addi-
tional commands may be entered.

Transfers to and from the APU may be handled by the
associated processor using conventional programmed /O, or
may be handled by a direct memory access controller for im-
proved performance. Upon completion of each command, the
APU issues an end of execution signal that may be used as
an interrupt by the CPU to help coordinate program execution.

BLOCK DIAGRAM

@ —Of 16
AD —=O
_ BUS
WR —=O| conTRoL OPERAND WORKING
[ p—— RERAN REGISTERS
PAUSE =—O} 8x16
“ 16 ‘ l
u
x
. 8
DB0-DB? =l o BYS CONSTANT
BUFFER COMMAND ROM
REGISTER
8 MICRO-
CONTROLLER
END REGISTER CONTROL
ROM *
EACK
INTERFACE
SVREQ =— cONTROL
SVACR —=
RESET ——]
ok —f
01892B-1

CONNECTION DIAGRAM

Top View
D-24-2
(@np) vss ——{ | ® ~ 24 [ }—= END
#svyvee — |2 23 [ J=— ciK
EACK —={ |3 22 [ J=—— RESET
Svack —{_| 4 21 J=—ci
svhea =— |5 20 [ }=— RD
DO [ 19 [ J=— WR
nor { o, amesma o o
oo =—={ |8 17 [ }— PAUSE
ot =—=[ |9 16 [ }—— VoD (+12V)
pB2 = |10 15 [ J=— DB7
083 = |1 14 [ J=— DB6
pBs =—{ |12 13 0BS5S
01892B-2

Note: Pin 1 is marked for orientation.

ORDERING INFORMATION

Package Ambient Maximum Clock Frequency
Type Temperature 2MHz 3MHz 4MHz
0°C < Ta < +70°C Am9511ADC Amg511A-1DC Am9511A-4DC
Hermetic DIP —40°C < Tp < +85°C Am9511ADI Am9511A-1DI
—55°C < Tp < +125°C | Am9511ADMB | Am9511A-1DMB
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INTERFACE SIGNAL DESCRIPTION

VCC: +5V Power Supply
VDD: +12V Power Supply
VSS: Ground

CLK (Clock, Input)

An external timing source connected to the CLK input provides
the necessary clocking. The CLK input can be asynchronous to
the RD and WR control signals.

RESET (Reset, Input)

A HIGH on this input causes initialization. Reset terminates any
operation in progress, and clears the status register to zero. The
internal stack pointer is initialized and the contents of the stack
may be affected but the command register is not affected by the
reset operation. After a reset the END output will be HIGH, and
the SVREQ output will be LOW. For proper initialization, the
RESET input must be HIGH for atleast five CLK periods following
stable power supply voltages and stable clock.

C/D (Command/Data Select, Input)

The C/D input together with the RD and WR inputs determines
the type of transfer to be performed on the data bus as follows:

C/D| RD |WR Function

L H L Push data byte into the stack
L L H Pop data byte from the stack
H H L Enter command byte from the data bus
H L H Read Status
X L L Undefined

L = LOW

H = HIGH

X = DON'T CARE

END (End of Execution, Output)

A LOW on this output indicates that execution of the current
command is complete. This output will be cleared HIGH by ac-
tivating the EACK input LOW or performing any read or write
operation or device initialization using the RESET. If EACK is
tied LOW, the END output will be a pulse (see EACK descrip-
tion). This is an open drain output and requires a pull up to +5V.

Reading the status register while a command execution is in
progress is allowed. However any read or write operation clears
the flip-flop that generates the END output. Thus such continu-
ous reading could conflict with internal logic setting the END
flip-flop at the completion of command execution.

EACK (End Acknowledge, Input)

This input when LOW makes the END output go HIGH. As men-
tioned earlier LOW on the END output signals completion of a
command execution. The END output signal is derived from an
internal flip-flop which is clocked at the completion of a com-
mand. This flip-flop is clocked to the reset state when EACK is
LOW. Consequently, if the EACK is tied LOW, the END output
will be a pulse that is approximately one CLK period wide.

SVREQ (Service Request, Output)

A HIGH on this output indicates completion of a command. In
this sense this output is same as the END output. However,
whether the SVREQ output will go HIGH at the completion of a
command or not is determined by a service request bit in the
command register. This bit must be 1 for SVREQ to go HIGH.
The SVREQ can be cleared (i.e., go LOW) by activating the
SVACK input LOW or initializing the device using the RESET.

Also, the SVREQ will be automatically cleared after completion
of any command that has the service request bit as 0.

SVACK (Service Acknowledge, Input)

A LOW on this input activates the reset input of the flip-flop
generating the SVREQ output. If the SVACK input is perma-
nently tied LOW, it will conflict with the internal setting of the
flip-flop to generate the SVREQ output. Thus the SVREQ indi-
cation cannot be relied upon if the SVACK is tied LOW.

DBO0-DB?7 (Bidirectional Data Bus, Input/Output)

These eight bidirectional lines are used to transfer command,
status and operand information between the device and the host
processor. DBO is the least significant and DB7 is the most
significant bit position. HIGH on the data bus line corresponds to
1 and LOW corresponds to 0.

When pushing operands on the stack using the data bus, the
least significant byte must be pushed first and most significant
byte last. When popping the stack to read the result of an opera-
tion, the most significant byte will be available on the data bus
first and the least significant byte will be the last. Moreover, for
pushing operands and popping results, the number of transac-
tions must be equal to the proper number of bytes appropriate
for the chosen format. Otherwise, the internal byte pointer will
not be aligned properly. The Am9511A single precision format
requires 2 bytes, double precision and fioating-point formats re-
quire 4 bytes.

CS (Chip Select, Input)

This input must be LOW to accomplish any read or write opera-
tion to the Am9511A.

To perform a write operation data is presented on DBO through
DBY lines, C/D is driven to an appropriate level and the CSinput
is made LOW. However, actual writing into the Am9511A cannot
start until WR is made LOW. After initiating the write operation
by a WR HIGH to LOW transition, the PAUSE output will go
LOW momentarily (TPPWW).

The WR input can go HIGH after PAUSE goes HIGH. The data
lines, C/D input and the CS input can change when appropriate
hold time requirements are satisfied. See write timing diagram
for details.

To perform a read operation an appropriate logic level is estab-
lished on the C/D input and CS is made LOW. The Read opera-
tion does not start until the RD input goes LOW. PAUSE will go
LOW for a period of TPPWR. When PAUSE goes back HIGH
again, it indicates that read operation is complete and the re-
quired information is available on the DBO through DB?7 lines.
This information will remain on the data lines as long as RD input
is LOW. The RD input can return HIGH anytime after PAUSE
goes HIGH. The CS input and C/D inputs can change anytime
after RD returns HIGH. See read timing diagram for details.

RD (Read, Input)

A LOW on this input is used to read information from an internal
location and gate that information on to the data bus. The CS
input must be LOW to accomplish the read operation. The c/D
input determines what internal location is of interest. See C/D,

CS input descriptions and read timing diagram for details. If the
END output was LOW, performing’any read operation will make
the END output go HIGH after the HIGH to LOW transition of the,
RD input (assuming CS is LOW).
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‘WR (Write, Input)

A LOW on this input is used to transfer information from the data
bus into an internal location. The CS must be LOW to ac-
complish the write operation. The C/D determines which internal
location is to be written. See C/D, CS input descriptions and
write timing diagram for details.

If the END output was LOW, performing any write operation will
make the END output go HIGH after the LOW to HIGH transition
of the WR input (assuming CS is LOW).

PAUSE (Pause, Output)

This output is a handshake signal used while performing read or
write transactions with the Am9511A. A LOW at this output indi-
cates that the Am9511A has not yet completed its information
transfer with the host over the data bus. During a read operation,
after CS went LOW, the PAUSE will become LOW shortly (TRP)
after RD goes LOW. PAUSE will return high only after the data
bus contains valid output data. The CS and RD should remain
LOW when PAUSE is LOW. The RD may go high anytime after
PAUSE goes HIGH. During a write operation, after CS went
LOW, the PAUSE will be LOW for a very short duration
(TPPWN) after WR goes LOW. Since the minimum of TPPWW
is 0, the PAUSE may not go LOW at all for fast devices. WR may
go HIGH anytime after PAUSE goes HIGH.

FUNCTIONAL DESCRIPTION

Major functional units of the Am9511A are shown in the block
diagram. The Am9511A employs a microprogram controlled
stack oriented architecture with 16-bit wide data paths.

The Arithmetic Logic Unit (ALU) receives one of its operands
from the Operand Stack. This stack is an 8-word by 16-bit 2-port
memory with last in-first out (LIFO) attributes. The second
operand to the ALU is supplied by the internal 16-bit bus. In
addition to supplying the second operand, this bidirectional bus
also carries the results from the output of the ALU when re-
quired. Writing into the Operand Stack takes place from this
internal 16-bit bus when required. Also connected to this bus are
the Constant ROM and Working Registers. The ROM provides
the required constants to perform the mathematical operations
(Chebyshev Algorithms) while the Working Registers provide
storage for the intermediate values during command execution.

Communication between the external world and the Am9511A
takes place on eight bidirectional input/output lines DBO through
DB7 (Data Bus). These signals are gated to the internal eight-bit

bus through appropriate interface and buffer circuitry. Multi-
plexing facilities exist for bidirectional communication between
the internal eight and sixteen-bit buses. The Status Register and
Command Register are also accessible via the eight-bit bus.

The Am9511A operations are controlled by the microprogram
contained in the Control ROM. The Program Counter supplies
the microprogram addresses and can be partially loaded from
the Command Register. Associated with the Program Counter is
the Subroutine Stack where return addresses are held during
subroutine calls in the microprogram. The Microinstruction
Register holds the current microinstruction being executed. This
register facilitates pipelined microprogram execution. The In-
struction Decode logic generates various internal control signals
needed for the Am9511A operation.

The Interface Control logic receives several external inputs and
provides handshake related outputs to facilitate interfacing the
Am9511A to microprocessors.

COMMAND FORMAT

Each command entered into the Am9511A consists of a single
8-bit byte having the format illustrated below:

OPERATION .
SVREQ SINGLE & FIXED CODE
6 | | I I
7 6 5 4 3 2 1 °

. 018928-3
Bits 0-4 select the operation to be performed as shown in the
table. Bits 5-6 select the data format for the operation. If bit 5
is a 1, a fixed point data format is specified. If bit 5 is a 0,
floating point format is specified. Bit 6 selects the precision of
the data to be operated on by fixed point commands (if bit 5
= 0, bit 6 must be 0). If bit 6 is a 1, single-precision (16-bit)
operands are indicated; if bit 6 is a 0, double-precision (32-bit)
operands are indicated. Results are undefined for all illegal
combinations of bits in the command byte. Bit 7 indicates
whether a service request is to be issued after the command
is executed. If bit 7 is a 1, the service request output
(SVREQ) will go high at the conclusion of the command and
will remain high until reset by a low level on the service
acknowledge pin (SVACK) or until completion of execution of
a succeeding command where bit 7 is 0. Each command is-
sued to the Am9511A requests post execution service based
upon the state of bit 7 in the command byte. When bit 7 is a
0, SVREQ remains low.
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COMMAND SUMMARY

1. TOS means Top of Stack. NOS means Next on Stack.

2. AMD Application Brief “Algorithm Details for the Am9511A
APU” provides detailed descriptions of each command func-
tion, including data ranges, accuracies, stack configurations,
etc.

3. Many commands destroy one stack location (bottom of
stack) during development of the result. The derived func-
tions may destroy several stack locations. See Application
Brief for details.

4.

Command Code Command c 4 Description

7]e6[s[a]3]2]1]0] Mnemoni ommand Descriptio
FIXED-POINT 16-BIT
sr 1 1 0 1 1 [o] 0 SADD Add TOS to NOS. Result to NOS. Pop Stack.
sr 1 1 0 1 1 Q 1 SsuB Subtract TOS from NOS. Result to NOS. Pop Stack.
sr 1 1 0 1 1 1 0 SMUL Multiply NOS by TOS. Lower half of result to NOS. Pop Stack.
sr 1 1 1 0 1 1 0 SMUU Multiply NOS by TOS. Upper half of result to NOS. Pop Stack.
sr 1 1 0 1 1 1 1 SDIV Divide NOS by TOS. Result to NOS. Pop Stack.
FIXED-POINT 32-BIT
sr 0 1 0 1 1 0 0 DADD Add TOS to NOS. Result to NOS. Pop Stack.
sr 0 1 0 1 1 0 1 psuB Subtract TOS from NOS. Result to NOS. Pop Stack.
sr 0 1 0 1 1 1 0 DMUL Multiply NOS by TOS. Lower half of result to NOS. Pop Stack.
sr (o} 1 1 0 1 1 0 DMUU Multiply NOS by TOS. Upper half of resuit to NOS. Pop Stack.
sr| O 1 0 1 1 1 1 DDIV Divide NOS by TOS. Result to NOS. Pop Stack.
FLOATING-POINT 32-BIT
sr | O 0 1 0 0 0 0 FADD Add TOS to NOS. Result to NOS. Pop Stack.
sr 0 0 1 0 0 0 1 FSuB Subtract TOS from NOS. Result to NOS. Pop Stack.
sr | O 0 1 0 0 1 0 FMUL Multiply NOS by TOS. Result to NOS. Pop Stack.
sr ] 0 1 0 0 1 1 FDIV Divide NOS by TOS. Result to NOS. Pop Stack.
DERIVED FLOATING-POINT FUNCTIONS
sr 0 0 0 0 0 0 1 SQRT Square Root of TOS. Result in TOS.
sr| O 0 0 0 0 1 1] SIN Sine of TOS. Result in TOS.
sr| O (o] [o] 0 0 1 1 Ccos Cosine of TOS. Result in TOS.
sr 0 0 0 0 1 0 0 TAN Tangent of TOS. Result in TOS.
sr o] 0 0 0 1 0 1 ASIN Inverse Sine of TOS. Result in TOS.
sr o] (o] 0 0 1 1 0 ACOS Inverse Cosine of TOS. Result in TOS.
sr 0 0 0 0 1 1 1 ATAN Inverse Tangent of TOS. Result in TOS.
sr 0 0 0 1 0 0 0 LOG Common Logarithm (base 10) of TOS. Resuit in TOS.
sr o] 0 0 1 0 o] 1 LN Natural Logarithm (base e) of TOS. Result in TOS.
sr 0 0 0 1 0 1 0 EXP Exponential (e*) of TOS. Result in TOS.
sr 0 0 0 1 0 1 1 PWR NOS raised to the power in TOS. Result in NOS. Pop Stack.
DATA MANIPULATION COMMANDS
sr (] 0 0 0 0 0 0 NOP No Operation
sr 0 0 1 1 1 1 1 FIXS Convert TOS from floating point to 16-bit fixed point format.
sr 0 0 1 1 1 1 0 FIXD Convert TOS from floating point to 32-bit fixed point format.
sr| O 0 1 1 1 0 1 FLTS Convert TOS from 16-bit fixed point to floating point format.
sr 0 0 1 1 1 0 0 FLTD Convert TOS from 32-bit fixed point to floating point format.
sr 1 1 1 0 1 (o] 0 CHSS Change sign of 16-bit fixed point operand on TOS.
sr 0 1 1 0 1 0 0 CHSD Change sign of 32-bit fixed point operand on TOS.
sr | 0 0 1 0 1 0 1 CHSF Change sign of floating point operand on TOS.
sr 1 1 1 0 1 1 1 PTOS Push 16-bit fixed point operand on TOS to NOS (Copy)
sr 0 1 1 0 1 1 1 PTOD Push 32-bit fixed point operand on TOS to NOS. (Copy)
sr| O 0 1 0 1 1 1 PTOF Push floating point operand on TOS to NOS. (Copy)
sr 1 1 1 1 0 0 0 POPS Pop 16-bit fixed point operand from TOS. NOS becomes TOS.
sr 0 1 1 1 0 0 0 POPD Pop 32-bit fixed point operand from TOS. NOS becomes TOS.
sr 0 0 1 1 0 0 0 POPF Pop floating point operand from TOS. NOS becomes TOS.
sr 1 1 1 1 0 0 1 XCHS Exchange 16-bit fixed point operands TOS and NOS.
sr 0 1 1 1 0 0 1 XCHD Exchange 32-bit fixed point operands TOS and NOS.
sr 0 0 1 1 0 0 1 XCHF Exchange floating point operands TOS and NOS.
sr | O 0 1 1 0 1 0 PUPI Push floating point constant “z" onto TOS. Previous TOS becomes NOS.
NOTES:

The trigonometric functions handle angles in radians, not
degrees.

. No remainder is available for the fixed-point divide functions.
. Results will be undefined for any combination of command

coding bits not specified in this table.
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COMMAND INITIATION

After properly positioning the required operands on the stack, a
command may be issued. The procedure for initiating a com-
mand execution is as follows:

1. Enter the appropriate command on the DB0-DB?7 lines.

2. Establish HIGH on the C/D input.

3. Establish LOW on the CS input.

4. Establish LOW on the WR input after an appropriate set up
time (see timing diagrams).

5. Sometime after the HIGH to LOW level transition of WR
input, the PAUSE output will become LOW. After a delay of
TPPWW, it will go HIGH to acknowledge the write operation.
The WR input can return to HIGH anytime after PAUSE going
HIGH. The DB0-DB7, C/D and CS inputs are allowed to
change after the hold time requirements are satisfied (see
timing diagram).

An attempt to issue a new command while the current command
execution is in progress is allowed. Under these circumstances,
the PAUSE output will not go HIGH until the current command
execution is completed.

OPERAND ENTRY

The Am9511A commands operate on the operands located at
the TOS and NOS and results are returned to the stack at NOS
and then popped to TOS. The operands required for the
Am9511A are one of three formats — single precision fixed-point
(2 bytes), double precision fixed-point (4 bytes) or floating-point
(4 bytes). The result of an operation has the same format as the
operands except for float to fix or fix to float commands.

Operands are always entered into the stack least significant byte
first and most significant byte last. The following procedure must
be followed to enter operands onto the stack:

1. The lower significant operand byte is established on the
DB0-DB7 lines. _

2. A LOW is established on the C/D input to specify that data is
to be entered into the stack.

3. The CS input is made LOW. L

4. After appropriate set up time (see timing diagrams), the WR
input is made LOW. The PAUSE output will become LOW.

5. Sometime after this event, the PAUSE will return HIGH to
indicate that the write operation has been acknowledged.

6. Anytime after the PAUSE output goes HIGH the WR input
can be made HIGH. The DB0-DB7, C/D and CS inputs can
change after appropriate hold time requirements are satisfied
(see timing diagrams).

The above procedure must be repeated until all bytes of the
operand are pushed into the stack. It should be noted that for
single precision fixed-point operands 2 bytes should be pushed
and 4 bytes must be pushed for double precision fixed-point or
floating-point. Not pushing all the bytes of a quantity will result in
byte pointer misalignment.

The Am9511A stack can accommodate 8 single precision
fixed-point quantities or 4 double precision fixed-point or float-
ing-point quantities. Pushing more quantities than the capacity
of the stack will result in loss of data which is usual with any
LIFO stack.

DATA REMOVAL

Result from an operation will be available at the TOS. Results
can be transferred from the stack to the data bus by reading the
stack. When the stack is popped for results, the most significant
byte is available first and the least significant byte last. A result is
always of the same precision as the operands that produced it

except for format conversion commands. Thus when the result
is taken from the stack, the total number of bytes popped out
should be appropriate with the precision — single precision re-
sults are 2 bytes and double precision and floating-point results
are 4 bytes. The following procedure must be used for reading
the result from the stack:

1. A LOW is established on the C/D input.

2. The CS input is made LOW.

3. After appropriate set up time (see timing diagrams), the RD
input is made LOW. The PAUSE will become LOW.

4. Sometime after this, PAUSE will return HIGH indicating that
the data is available on the DB0-DB?7 lines. This data will
remain on the DB0-DB7 lines as long as the RD input re-
mains LOW. -

5. Anytime after PAUSE goes HIGH, the RD input can return
HIGH to complete‘transaction.

6. The CS and C/D inputs can change after appropriate hold
time requirements are satisfied (see timing diagram).

7. Repeat this procedure until all bytes appropriate for the pre-
cision of the result are popped out.

Reading of the stack does not alter its data; it only adjusts the
byte pointer. If more data is popped than the capacity of the
stack, the internal byte pointer will wrap around and older data
will be read again, consistent with the LIFO stack.

STATUS READ

The Am9511A status register can be read without any regard to
whether a command is in progress or not. The only implication
that has to be considered is the effect this might have on the
END output discussed in the signal descriptions.

The following procedure must be followed to accomplish status
register reading.

1. Establish HIGH on the C/D input.

2. Establish LOW on the CS input.

3. After appropriate set up time (see timing diagram) RD input is
made LOW. The PAUSE will become LOW.

4. Sometime after the HIGH to LOW transition of RD input, the
PAUSE will become HIGH indicating that status register
contents are available on the DB0O-DB7 lines. The status data
will remain on DBO-DB7 as long as RD input is LOW.

5. The RD input can be returned HIGH anytime after PAUSE
goes HIGH.

6. The C/D input and CS input can change after satisfying ap-
propriate hold time requirements (see timing diagram).

DATA FORMATS

The Am9511A Arithmetic Processing Unit handles operands in
both fixed-point and floating-point formats. Fixed-point operands
may be represented in either single (16-bit operands) or double
precision (32-bit operands), and are always represented as
binary, two’s complement values.

16-BIT FIXED-POINT FORMAT

S VALUE

lllllllHIIllllI

0

15
(MSB)
018928-4

32-BIT FIXED-POINT FORMAT

VALUE

s
NN NN
0

31
(MSB) 01892B-5




The sign (positive or negative) of the operand is located in the
most significant bit (MSB). Positive values are represented by
a sign bit of zero (S = 0). Negative values are represented by
the two’s complement of the corresponding positive value with
a sign bit equal to 1 (S = 1). The range of values that may be
accomodated by each of these formats is —32,767 to
+32,767 for single precision and —2,147,483,647 to
+2,147,483,647 for double precision.

Floating point binary values are represented in a format that
permits arithmetic to be performed in a fashion analogous to
operations with decimal values expressed in scientific nota-
tion.

(5.83 x 10%)(8.16 x 10") = (4.75728 x 10%)

In the decimal system, data may be expressed as values be-
tween 0 and 10 times 10 raised to a power that effectively
shifts the implied decimal point right or left the number of
places necessary to exbress the result in conventional form
(e.g., 47,572.8). The value-portion of the data is called the
mantissa. The exponent may be either negative or positive.

The concept of floating point notation has both a gain and a
loss associated with it. The gain is the ability to represent the
significant digits of data with values spanning a large dynamic
range limited only by the capacity of the exponent field. For
example, in decimal notation if the exponent field is two digits
wide, and the mantissa is five digits, a range of values (posi-
tive or negative) from 1.0000 x 107°° to 9.9999 x 10%%° can
be accommodated. The loss is that only the significant digits
of the value can be represented. Thus there is no distinction
in this representation between the values 123451 and
123452, for example, since each would be expressed
as: 1.2345 x 10°. The sixth digit has been discarded. In most
applications where the dynamic range of values to be rep-
resented is large, the loss of significance, and hence accuracy
of results, is a minor consideration. For greater precision a
fixed point format could be chosen, although with a loss of po-
tential dynamlc range.

The Am9511 is a binary arithmetic processor and requires
that floating point data be represented by a fractional man-
tissa value between .5 and 1 multiplied by 2 raised to an ap-
propriate power. This is expressed as follows:

value = mantissa x 2¢xPonent

7 6 5 4 3 2 1 0

BUSY SIGN ZERO ERRORCODE | CARRY

I— CARRY:

For example, the value 100.5 expressed in this form is
0.11001001 x 27. The decimal equivalent of this value may be
computed by summing the components (powers of two) of the
mantissa and then multiplying by the exponent as shown be-
low:

value = 271+ 272 + 275 4 278) x 27
= (0.5 + 0.25 + 0.03125 + 0.00290625) x 128
0.78515625 x 128
100.5

I

FLOATING POINT FORMAT

The format for floating-point values in the Am9511A is given
below. The mantissa is expressed as a 24-bit (fractional) value;
the exponent is expressed as an unbiased two's complement
7-bit value having a range of —64 to +63. The most significant
bit is the sign of the mantissa (0 = positive, 1 = negative), for a
total of 32 bits. The binary point is assumed to be to the left of
the most significant mantissa bit (bit 23). All floating-point data
values must be normalized. Bit 23 must be equal to 1, except for
the value zero, which is represented by all zeros.

IMfE— EXPONENT —| o MANTlSSA—————-—}
sisp b PP e bbb ettt
3130 2423 0

01892B-6

The range of values that can be represented in this format is
+(2.7x 1072% t0 9.2 x 10"®) and zero.

STATUS REGISTER

The Am9511A contains an eight bit status register with the fol-
lowing bit assignments.

If the BUSY bit in the status register is a one, the other status
bits are not defined; if zero, indicating not busy, the operation is
complete and the other status bits are defined as given below.

Previous operation resulted in carry or borrow from
most significant bit. (1 = Carry/Borrow, 0 = No

. Carry/No Borrow)
ERROR

This field contains an indication of the validity of the
CODE: result of the last operation. The error codes are:
0000 — No error
1000 — Divide by zero
0100 — Square root or log of negative number
1100 — Argument of inverse sine, cosine, or eX too
large
XX10 — Underflow
XX01 — Overflow
ZERO: Indicates that the value on the top of stack is zero
(1 = Value is zero).
SIGN: Indicates that the value on the top of stack is negative
(1 = Negative).
BUSY: Indicates that Am9511A is currently executing a com-

mand (1 = Busy).
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Table 1.
Command | Hex Code | Hex Code Execution Summary
Mnemonic (sr = 1) (sr = 0) Cycles Description
16-BIT FIXED-POINT OPERATIONS
SADO EC 6C 16-18 Add TOS to NOS. Result to NOS. Pop Stack.
SHUB ED 6D 30-32 Subtract TOS from NOS. Result to NOS. Pop Stack.
EMUL EE 6E 84-94 Multiply NOS by TOS. Lower result to NOS. Pop Stack.
sEMUU F6 76 80-98 Multiply NOS by TOS. Upper resuit to NOS. Pop Stack.
SOV EF 6F 84-94 Divide NOS by TOS. Result to NOS. Pop Stack.
32-BIT FIXED-POINT OPERATIONS
DADD AC 2C 20-22 Add TOS to NOS. Resuit to NOS. Pop Stack.
psus AD 2D 38-40 Subtract TOS from NOS. Result to NOS. Pop Stack.
DMUL AE 2E 194-210 Multiply NOS by TOS. Lower resuit to NOS. Pop Stack.
DMUU B6 36 182-218 Multiply NOS by TOS. Upper result to NOS. Pop Stack.
DDIV AF 2F 196-210 Divide NOS by TOS. Result to NOS. Pop Stack.
32-BIT FLOATING-POINT PRIMARY OPERATIONS
FADD 90 10 54-368 Add TOS to NOS. Result to NOS. Pop Stack.
FSUB 91 11 70-370 Subtract TOS from NOS. Result to NOS. Pop Stack.
FMUL 92 12 146-168 Multiply NOS by TOS. Result to NOS. Pop Stack.
FOIV 93 13 154-184 Divide NOS by TOS. Result to NOS. Pop Stack.
32-BIT FLOATING-POINT DERIVED OPERATIONS
SQRT 81 01 782-870 Square Root of TOS. Result to TOS.
SIN 82 02 3796-4808 Sine of TOS. Result to TOS.
Ccos 83 03 3840-4878 Cosine of TOS. Result to TOS.
TAN 84 04 4894-5886 Tangent of TOS. Result to TOS.
ASIN 85 05 6230-7938 Inverse Sine of TOS. Result to TOS.
ACOS 86 06 6304-8284 Inverse Cosine of TOS. Result to TOS.
ATAN 87 07 4992-6536 Inverse Tangent of TOS. Result to TOS.
LOG 88 08 4474-7132 Common Logarithm of TOS. Result to TOS.
LN 89 09 4298-6956 Natural Logarithm of TOS. Result to TOS.
EXP 8A 0A 3794-4878 e raised to power in TOS. Result to TOS.
PWR 8B 0B 8290-12032 NOS raised to power in TOS. Resuit to NOS. Pop Stack.
DATA AND STACK MANIPULATION OPERATIONS
NOP 80 00 4 No Operation. Clear or set SVREQ.
FIXS 9F 1F 90-214 } . ) ) .
Convert TOS from floating point format to fixed point format.
FIXD 9E 1E 90-336
FLTS 9D 1D 62-156 } ) . . .
Convert TOS from fixed point format to floating point format.
FLTD 9C 1C 56-342
(C;:zf) ;: ;: zzz: } Change sign of fixed point operand on TOS.
CHSF 95 15 16-20 Change sign of floating point operand on TOS.
PTOS F7 77 16
PTOD B7 37 20 Push stack. Duplicate NOS in TOS.
PTOF 97 17 20
POPS F8 78 10
POPD B8 38 12 Pop stack. Old NOS becomes new TOS. Old TOS rotates to bottom.
POPF 98 18 12
XCOHS F9 79 18
XCHD B9 39 26 Exchange TOS and NOS.
XOHF 99 19 26
PLIM 9A 1A 16 Push floating point constant 7 onto TOS. Previous TOS becomes NOS.
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COMMAND DESCRIPTIONS

This section contains detailed descriptions of the APU com-
mands. They are arranged in alphabetical order by command
mnemonic. In the descriptions, TOS means Top Of Stack and
NOS means Next On Stack.

All derived functions except Square Root use Chebyshev
polynomial approximating algorithms. This approach is used
to help minimize the internal microprogram, to minimize the
maximum error values and to provide a relatively even dis-
tribution of errors over the data range. The basic arithmetic
operations are used by the derived functions to compute the
various Chebyshev terms. The basic operations may produce
error codes in the status register as a result.

Execution times are listed in terms of clock cycles and may
be converted into time values by multiplying by the clock
period used. For example, an execution time of 44 clock cy-

cles when running at a 3MHz rate translates to 14 micro-
seconds (44 x 32us = 14us). Variations in execution cycles
reflect the data dependency of the algorithms.

In some operations exponent overflow or underflow may be
possible. When this occurs, the exponent returned in the re-
sult will be 128 greater or smaller than its true value.

Many of the functions use portions of the data stack as
scratch storage during development of the results. Thus pre-
vious values in those stack locations will be lost. Scratch loca-
tions destroyed are listed in the command descriptions and
shown with the crossed-out locations in the Stack Contents
Aiter diagram.

Table 1 is a summary of all the Am8511A commands. It shows
the hex codes for each command, the mnemonic abbreviation, a
brief description and the execution time in clock cycles. The
commands are grouped by functional classes.

The command mnemonics in alphabetical order are shown
below in Table 2.

Table 2.
Command Mnemonics in Alphabetical Order.

ACOS ARCCOSINE

ASIN ARCSINE

ATAN ARCTANGENT

CHSD CHANGE SIGN DOUBLE
CHSF CHANGE SIGN FLOATING
CHSS CHANGE SIGN SINGLE
CcOs COSINE

DADD DOUBLE ADD

DDIV DOUBLE DIVIDE

DMUL DOUBLE MULTIPLY LOWER
DMUU DOUBLE MULTIPLY UPPER
DSuB DOUBLE SUBTRACT

EXP EXPONENTIATION (e*)
FADD FLOATING ADD

FDIV FLOATING DIVIDE

FIXD FIX DOUBLE

FIXS FIX SINGLE

FLTD FLOAT DOUBLE

FLTS FLOAT SINGLE

FMUL FLOATING MULTIPLY
FsuB FLOATING SUBTRACT

LOG COMMON LOGARITHM
LN NATURAL LOGARITHM

NOP NO OPERATION

POPD POP STACK DOUBLE

POPF POP STACK FLOATING

POPS POP STACK SINGLE

PTOD PUSH STACK DOUBLE

PTOF PUSH STACK FLOATING

PTOS PUSH STACK SINGLE

PUPI PUSH =

PWR POWER (X")

SADD SINGLE ADD

SDIV SINGLE DIVIDE

SIN SINE

SMUL SINGLE MULTIPLY LOWER
SMUU SINGLE MULTIPLY UPPER

SQRT SQUARE ROQOT

SSUB SINGLE SUBTRACT

TAN TANGENT

XCHD EXCHANGE OPERANDS DOUBLE
XCHF EXCHANGE OPERANDS FLOATING
XCHS EXCHANGE OPERANDS SINGLE
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ACOS

32-BIT FLOATING-POINT INVERSE COSINE

7 6 5 4 3 2 1 0

Binary Coding: | sr | 0 [0 [ o [ o |1 ]1] o]
Hex Coding: 86 with sr = 1
06 with sr = 0
Execution Time: 6304 to 8284 clock cycles
Description:

The 32-bit floating-point operand A at the TOS is replaced by the
32-bit floating-point inverse cosine of A. The result R is a value in
radians between 0 and =. Initial operands A, B, C and D are lost.
ACOS will accept all input data values within the range of —1.0 to
+1.0. Values outside this range will return an error code of 1100
in the status register.

Accuracy: ACOS exhibits a maximum relative error of 2.0 x

1077 over the valid input data range.
Status Affected: Sign, Zero, Error Field

STACK CONTENTS
BEFORE AFTER

Am9511A

ATAN

32-BIT FLOATING-POINT
INVERSE TANGENT

7 6 5 4 3 2 1 0
BinaryCoding:isri010'0'0[111[11

Hex Coding: 87 with sr = 1

07 with sr = 0
Execution Time: 4992 to 6536 clock cycles
Description:

Tr.e 32-bit floating-point operand A atthe TOS is replaced by the

32-bit floating-point inverse tangent of A. The result Ris a value in

radians between —7/2 and + /2. Initial operands A, C and D are

lost. Operand B is unchanged.

ATAN will accept all input data values that can be represented in

the floating point format.

Accuracy: ATAN exhibits a maximum relative error of 3.0 x
1077 over the input data range.

Status Affected: Sign, Zero

STACK CONTENTS
BEFORE

A TOS

B

A —— TOS ——=| R
B r
c i

C

| —

.o |

D

|
[-—— 32 —=] [

32 |

ASIN

32-BIT FLOATING-POINT INVERSE SINE

7 6 5 4 3 2 1 0
Binary Coding: sr | 0 [0 Jo [ o[ 1]o] 1]

Hex Coding: 85 with sr = 1

05 with sr = 0
Execution Time: 6230 to 7938 clock cycles
Description:

The 32-bit floating-point operand A at the TOS is replaced by the

32-bit floating-point inverse sine of A. The result R is a value in

radians between —/2 and +/2. Initial operands A, B, C and D

are lost.

ASIN will accept all input data values within the range of —1.0 to

+1.0. Values outside this range will return an error code of 1100

in the status register.

Accuracy: ASIN exhibits a maximum relative error of 4.0 x
1077 over the valid input data range.

Status Affected: Sign, Zero, Error Field

STACK CONTENTS

CHSD

32-BIT FIXED-POINT SIGN CHANGE

7 6 5 4 3 2 1 0
BinaryCoding:’sr]Of1]1Ior1IO 0
Hex Coding: B4 with sr = 1

34 withsr = 0
Execution Time: 26 to 28 clock cycles
Description:

The 32-bit fixed-point two’s complement integer operand A at
the TOS is subtracted from zero. The result R replaces A at
the TOS. Other entries in the stack are not disturbed.

Overflow status will be set and the TOS will be returned un-
changed when A is input as the most negative value possible
in the format since no positive equivalent exists.

Status Affected: Sign, Zero, Error Field (overflow)

STACK CONTENTS

BEFORE AFTER
A TOS R
B
c e
D p—
| 32 . f 32 !

BEFORE AFTER
ri A TOS R
B B
C c
D D
| 32 | I 32 !
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CHSF

32-BIT FLOATING-POINT SIGN CHANGE

ToTe e[ TeT+]

Binary Coding: { sr { 0 [ 0 ] 1

Hex Coding: 95 with sr = 1

15 withsr = 0
Execution Time: 16 to 20 clock cycles
Description:

The sign of the mantissa of the 32-bit floating-point operand A at
the TOS is inverted. The result R replaces A at the TOS. Other
stack entries are unchanged.
If A is input as zero (mantissa MSB = 0), no change is made.
Status Affected: Sign, Zero

STACK CONTENTS

BEFORE AFTER
A TOS R
B B
c c
D D
| 32 | | 32 .

COS

32-BIT FLOATING-POINT COSINE

7 6 5 4 3 2 1 0
BinaryCoding:lsr]O|0|010’0\1I1J

Hex Coding: 83 with sr = 1

03 with sr = 0
Execution Time: 3840 to 4878 clock cycles
Description:

The 32-bit floating-point operand A at the TOS is replaced by

R, the 32-bit floating-point cosine of A. A is assumed to be in

radians. Operands A, C and D are lost. B is unchanged.

The COS function can accept any input data value that can

be represented in the data format. All input values are range

reduced to fall within an interval of —#/2 to +#/2 radians.

Accuracy: COS exhibits a maximum relative error of 5.0 x
1077 for all input data values in the range of —27
to +2m radians.

Status Affected: Sign, Zero

STACK CONTENTS

CHSS

16-BIT FIXED-POINT SIGN CHANGE

7 6 5 4 3
BinaryCoding:Lsrl 1 J 1 I 1 I OW

2 1 0

tfofo]

Hex Coding: F4 with sr = 1

74 with sr = 0
Execution Time: 22 to 24 clock cycles
Description:

16-bit fixed-point two’s complement integer operand A atthe TOS
is subtracted from zero. The result R replaces A at the TOS. All
other operands are unchanged.

Overflow status will be set and the TOS will be returned un-
changed when A is input as the most negative value possible in
the format since no positive equivalent exists.

Status Affected: Sign, Zero, Overflow

STACK CONTENTS

BEFORE AFTER
A TOS R
B B
c c
D D
E E
F F
G G
H H
f— 16— fe—16 —]
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BEFORE AFTER
A TOS R
B B
c
D
| 32 | | 32 |

DADD

32-BIT FIXED-POINT ADD

7 6 5 4 3 2 1 0
1 0

BinaryCoding:Ler 0{ I 0 I I 1] 0]
Hex Coding: AC with sr = 1
2C with sr = 0
Execution Time: 20 to 22 clock cycles
Description:

The 32-bit fixed-point two’s complement integer operand A at the
TOS is added to the 32-bit fixed-point two’s complement integer
operand B at the NOS. The result R replaces operand B and the
Stack is moved up so that R occupies the TOS. Operand Biis lost.
Operands A, C and D are unchanged. If the addition generates a
carry it is reported in the status register.

If the result is too large to be represented by the data format, the
least significant 32 bits of the result are returned and overflow
status is reported.

Status Affected: Sign, Zero, Carry, Error Field

STACK CONTENTS

BEFORE AFTER
A ~—TOS —= R
B c
c D
D A
| 32 -l | 32 |




DDIV

32-BIT FIXED-POINT DIVIDE

7 6 5 4 3 2 1 0
Binary Coding: | sr [ 0 [ 1 [ o [ 1] 1 [ 1] 1]
Hex Coding:  AF with sr = 1
2F with sr = 0

Execution Time: 196 to 210 clock cycles when A # 0

18 clock cycles when A = 0.
Description:
The 32-bit fixed-point two’s complement integer operand B at
NOS is divided by the 32-bit fixed-point two’'s complement in-
teger operand A at the TOS. The 32-bit integer quotient R re-
places B and the stack is moved up so that R occupies the
TOS. No remainder is generated. Operands A and B are lost.
Operands C and D are unchanged.
If Ais zero, R is set equal to B and the divide-by-zero error
status will be reported. If either A or B is the most negative
value possible in the format, R will be meaningless and the
overflow error status will be reported.
Status Affected: Sign, Zero, Error Field

STACK CONTENTS

BEFORE AFTER
A TOS R
B c
c D
D
| 32 ‘ ' 32 %

DMUL
32-BIT FIXED-POINT MULTIPLY, LOWER

7 6 5 4 3 2 1 0

BinaryCoding:isri 0 i i % 0 ; i 1 !

P11]0]
Hex Coding: AE with sr = 1
2E with sr = 0
Execution Time: 194 to 210 clock cycles
Description:

The 32-bit fixed-point two's complement integer operand A at the
TOS is multiplied by the 32-bit fixed-point two's complement in-
teger operand B at the NOS. The 32-bit least significant half of the
product R replaces B and the stack is moved up so that R oc-
cupies the TOS. The most significant half of the product is lost.
Operands A and B are lost. Operands C and D are unchanged.
The overflow status bit is set if the discarded upper half was
non-zero. If either A or B is the most negative value that can
be represented in the format, that value is returned as R and
the overflow status is set.

Status Affected: Sign, Zero, Overflow

STACK CONTENTS

Am9511A

DMUU

32-BIT FIXED-POINT MULTIPLY, UPPER

7 6 5 4 3 2 1 0
BinaryCoding:lsr‘ 01111 1011I1| 0]
Hex Coding: B6 with sr = 1

36 with sr = 0
Execution Time: 182 to 218 clock cycles
Description:

The 32-bit fixed-point two’s complement integer operand A at
the TOS is multiplied by the 32-bit fixed-point two’s comple-
ment integer operand B at the NOS. The 32-bit most signifi-
cant half of the product R replaces B and the stack is moved
up so that R occupies the TOS. The least significant half of
the product is lost. Operands A and B are lost. Operands C
and D are unchanged.

If A or B was the most negative value possible in the format,
overflow status is set and R is meaningless.

Status Affected: Sign, Zero, Overflow

STACK CONTENTS

BEFORE AFTER
A TOS R
B c
c D
D
[ 32 | | 32 |

DSUB
32-BIT FIXED-POINT SUBTRACT

7 6 5 4 3 2 1 0
BinaryCoding:‘sr)0|1lol1]1]011I

Hex Coding:  AD with sr = 1

2D withsr =0
Execution Time: 38 to 40 clock cycles
Description:

The 32-bit fixed-point two's complement operand A at the
TOS is subtracted from the 32-bit fixed-point two’s comple-
ment operand B at the NOS. The difference R replaces
operand B and the stack is moved up so that R occupies the
TOS. Operand B is lost. Operands A, C and D are un-
changed.

If the subtraction generates a borrow it is reported in the carry
status bit. If A is the most negative value that can be rep-
resented in the format the overflow status is set. If the resuit
cannot be represented in the data format range, the overflow
bit is set and the 32 least significant bits of the result are re-
turned as R.

Status Affected: Sign, Zero, Carry, Overflow

STACK CONTENTS

BEFORE AFTER
A TOS R
B o}
c D
D
| 32 | I 32 |

BEFORE AFTER
A TOS R
B c
c D
D A
32 | = 32 |
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EXP

32-BIT FLOATING-POINT &*

7 & 5 4 3 2 1 0

Binary Coding:| st [0 [o [ o [1]o[1] o]
Hex Coding: 8A withsr =1
0A with sr = 0

Execution Time: 3794 to 4878 clock cycles for IAl < 1.0 x 2°
34 clock cycles for IAl > 1.0 x 2°

Description:

The base of natural logarithms, e, is raised to an exponent value

specified by the 32-bit floating-point operand A at the TOS. The

result R of e” replaces A. Operands A, C and D are lost. Operand

B is unchanged.

EXP accepts all input data values within the range of —1.0 x 2*5

to +1.0 x2*5, Input values outside this range will return a code of

1100 in the error field of the status register.

Accuracy: EXP exhibits a maximum relative error of 5.0 x
1077 over the valid input data range.

Status Affected: Sign, Zero, Error Field

STACK CONTENTS

FDIV
32-BIT FLOATING-POINT DIVIDE

7 6 5 4 3 2
Binary Coding: | st | 0 [ 0 | 1 [0 ] o]
93 with sr = 1
13 withsr = 0

Execution Time: 154 to 184 clock cycles for A # 0
22 clock cycles for A = 0

RN

Hex Coding:

Description:

32-bit floating-point operand B at NOS is divided by 32-bit
floating-point operand A at the TOS. The result R replaces B and
the stack is moved up so that R occupies the TOS. Operands A
and B are lost. Operands C and D are unchanged.

If operand A is zero, R is set equal to B and the divide-by-zero
error is reported in the status register. Exponent overflow or
underflow is reported in the status register, in which case the
mantissa portion of the result is correct and the exponent portion
is offset by 128.

Status Affected: Sign, Zero, Error Field

STACK CONTENTS

BEFORE AFTER
A TOS R
B B
c
D
[ 32 | | 32 !

FADD

32-BIT FLOATING-POINT ADD

7 6 5 4 3 2 1 0

Binary Coding: | st | 0 | 0 | 1 | 0] 0] 0] 0 |
Hex Coding: 90 with sr = 1
10 withsr = 0

Execution Time: 54 to 368 clock cycles for A # 0

24 clock cycles for A = 0
Description:
32-bit floating-point operand A at the TOS is added to 32-bit
floating-point operand B at the NOS. The result R replaces B and
the stack is moved up so that R occupies the TOS. Operands A
and B are lost. Operands C and D are unchanged.
Exponent alignment before the addition and normalization of the
result accounts for the variation in execution time. Exponent
overflow and underflow are reported in the status register, in
which case the mantissa is correct and the exponent is offset by
128.
Status Affected: Sign, Zero, Error Field

STACK CONTENTS

BEFORE AFTER
A TOS R
B c
c D
D
! 32 I 32 |

FIXD

32-BIT FLOATING-POINT TO
32-BIT FIXED-POINT CONVERSION

7 6 5 4 3 2 1 0
BinaryCoding:[srlO ] 0 | 1 l 1 l 1 ] 1 D l
Hex Coding: 9E with sr = 1

1E with sr = 0
Execution Time: 90 to 336 clock cycles
Description:

32-bit floating-point operand A at the TOS is converted to a
32-bit fixed-point two’'s complement integer. The result R re-
places A. Operands A and D are lost. Operands B and C are
unchanged.

If the integer portion of A is larger than 31 bits when con-
verted, the overflow status will be set and A will not be
changed. Operand D, however, will still be lost.

Status Affected: Sign, Zero Overflow

STACK CONTENTS

BEFORE AFTER
A TOS R
B c
c D
D
| 32 ! | 32

BEFORE AFTER
A TOS R
B B
c c
D
| 32 ! | 32 |
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FIXS

32-BIT FLOATING-POINT TO
16-BIT FIXED-POINT CONVERSION

7 6 5 4 3 2 1 0
BinaryCoding:Isr l 0 l 0 ‘ 1 l 1 [ 1T1 ‘ 1 |
Hex Coding:  9F with sr = 1

1F with sr = 0
Execution Time: 90 to 214 clock cycles
Description:

32-bit floating-point operand A at the TOS is converted to a
16-bit fixed-point two’s complement integer. The result R re-
places the lower half of A and the stack is moved up by two
bytes so that R occupies the TOS. Operands A and D are
lost. Operands B and C are unchanged, but appear as upper
(u) and lower (l) halves on the 16-bit wide stack if they are
32-bit operands.

If the integer portion of A is larger than 15 bits when con-
verted, the overflow status will be set and A will not be
changed. Operand D, however, will still be lost.

Status Affected: Sign, Zero, Overflow

STACK CONTENTS

BEFORE AFTER
A | T05s— =] R
B . Bu
o} BI
D Cu
- 32w Cl
f—16 =]

FLTD

32-BIT FIXED-POINT TO
32-BIT FLOATING-POINT CONVERSION

7 6 5 4
Binary Coding: [ sr | 0 [0 | 1 |

T o o]

Hex Coding:  9C with sr = 1

1C withsr = 0
Execution Time: 56 to 342 clock cycles
Description:

32-bit fixed-point two’s complement integer operand A atthe TOS
is converted to a 32-bit floating-point number. The result R re-
places A atthe TOS. Operands A and D are lost. Operands B and
C are unchanged.

Status Affected: Sign, Zero

STACK CONTENTS

Am9511A

FLTS

16-BIT FIXED-POINT TO
32-BIT FLOATING-POINT CONVERSION

7 6 5 4 3 2 1 0
Binary Coding: [ sr [ 0 [ o [ 1 [ 1 |1 o [1]

Hex Coding: 9D with sr = 1

1D withsr = 0
Execution Time: 62 to 156 clock cycles
Description:

16-bit fixed-point two’s complement integer A at the TOS is
converted to a 32-bit floating-point number. The lower half of the
result R (RI) replaces A, the upper half (Ru) replaces H and the
stack js moved down so that Ru occupies the TOS. Operands A,
F, G and H are lost. Operands B, C, D and E are unchanged.
Status Affected: Sign, Zero

STACK CONTENTS

BEFORE AFTER
A TOS Ru
B RI
c B
D c
E D
F E
G
H
f— 16 —==] f— 16 —=]

FMUL

32-BIT FLOATING-POINT
MULTIPLY

7 6 5 4 3 2 1 0
Binary Coding: [ st [0 [o [ 1 oo [1] o]

Hex Coding: 92 with sr = 1

12 withsr = 0
Execution Time: 146 to 168 clock cycles
Description:

32-bit floating-point operand A at the TOS is multiplied by the
32-bit floating-point operand B at the NOS. The normalized result
R replaces B and the stack is moved up so that R occupies the
TOS. Operands A and B are lost. Operands C and D are un-
changed.

Exponent overflow or underflow is reported in the status register,
in which case the mantissa portion of the result is correct and the
exponent portion is offset by 128.

Status Affected: Sign, Zero, Error Field

STACK CONTENTS

BEFORE AFTER
A TOS R
B B
c c
D
| 32 | 32 !
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BEFORE AFTER
B A -~ TOS—= R
B c
c D
D
! 32 ! | 32 |
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FSUB

32-BIT FLOATING-POINT SUBTRACTION

7 6 5 4
Binary Coding: I sr l 0 | 0 ' 1
91 with sr = 1
11 withsr = 0
Execution Time: 70 to 370 clock cycles for A # 0
26 clock cycles for A = 0

oo o]+

Hex Coding:

Description:

32-bit floating-point operand A at the TOS is subtracted from
32-bit floating-point operand B at the NOS. The normalized
difference R replaces B and the stack is moved up so that R
occupies the TOS. Operands A and B are lost. Operands C
and D are unchanged.

Exponent alignment before the subtraction and normalization
of the result account for the variation in execution time.
Exponent overflow or underflow is reported in the status regis-
ter in which case the mantissa portion of the result is correct
and the exponent portion is offset by 128.

Status Affected: Sign, Zero, Error Field (overflow)

STACK CONTENTS

BEFORE AFTER
A TOS R
B c
c D
D
! 32 ! [ 32 !

LOG

32-BIT FLOATING-POINT

COMMON LOGARITHM
7 6 5 4 3 2 1 0

Binary Coding: | st [ 0 [0 [ o [ 1] o[ o] o]
Hex Coding:

88 with sr = 1

08 with sr = 0

Execution Time: 4474 to 7132 clock cycles for A > 0

20 clock cycles for A < 0

Description:

The 32-bit floating-point operand A at the TOS is replaced by R,

the 32-bit floating-point common logarithm (base 10) of A.

Operands A, C and D are lost. Operand B is unchanged.

The LOG function accepts any positive input data value that can

be represented by the data format. If LOG of a non-positive value

is attempted an error status of 0100 is returned.

Accuracy: LOG exhibits a maximum absolute error of 2.0x 107
for the input range from 0.1 to 10, and a maximum
relative error of 2.0 x 1077 for positive values less
than 0.1 or greater than 10.

Status Affected: Sign, Zero, Error Field

BEFORE  STACK CONTENTS  AFTER
A TOS R
B B
C
D
. 32 | [ 32 |
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LN

32-BIT FLOATING-POINT
NATURAL LOGARITHM

7 6 5 4 3 2 1 0
BinaryCoding:[sr'O’Ole1IO ‘Of1 |
89 with sr = 1
09 with sr = 0

Execution Time: 4298 to 6956 clock cycles for A > 0
20 clock cycles for A< 0

Hex Coding:

Description:

The 32-bit floating-point operand A at the TOS is replaced by

R, the 32-bit floating-point natural logarithm (base e) of A.

Operands A, C and D are lost. Operand B is unchanged.

The LN function accepts all positive input data values that can

be represented by the data format. If LN of a non-positive

number is attempted an error status of 0100 is returned.

Accuracy: LN exhibits a maximum absolute error of 2 x 10~7
for the input range from e~ to e, and a maximum
relative error of 2.0 x 1077 for positive values less
than e~ or greater than e.

Status Affected: Sign, Zero, Error Field

STACK CONTENTS

BEFORE AFTER
A TOS R
B B
c —
D —
| 32 | | 32 |

NOP

OPERATION
7 6 5 4 3 2 1 0
Binary Coding: I sr | 0 | 0 ’ 0 I 0 ] 0 I 0 I 0 |

Hex Coding: 80 with sr = 1

00 with sr = 0
Execution Time: 4 clock cycles
Description:

The NOP command performs no internal data manipulations. K
may be used to set or clear the service request interface line
without changing the contents of the stack.

Status Affected: The status byte is cleared to all zeroes.



POPD

32-BIT
STACK POP

BinaryCoding:‘:rlts)l?‘:‘?lzlglgl

Hex Coding:  B8-with sr = 1

38 with sr = 0
Execution Time: 12 clock cycles
Description:

The 32-bit stack is moved up so that the old NOS becomes the
new TOS. The previous TOS rotates to the bottom of the stack. All
operand values are unchanged. POPD and POPF execute the
same operation.

Status Affected: Sign, Zero

STACK CONTENTS

BEFORE AFTER

A TOS B

B Cc

C D

D A |
| 32 | | 32 |

32-BIT
STACK POP
7 6 5 4 3 2 1 0
Binary Coding: [sr [0 [ o [ 1 [ 1 [o o] o]
Hex Coding: 98 with sr = 1
18 withsr = 0

Execution Time: 12 clock cycles
Description:

The-32-bit stack is moved up so that the old NOS becomes the
new TOS. The old TOS rotates to the bottom of the stack. All
operand values are unchanged. POPF and POPD execute the
same operation.

Status Affected: Sign, Zero

STACK CONTENTS

AmS511A

POPS

16-BIT
STACK POP
7 6 5 4 3 2 1 0

Binary Coding: | st [ 1 [ 1 [1 [ 1 [ oo ] o]
Hex Coding:  F8 with sr = 1

78 with sr = 0
Execution Time: 10 clock cycles
Description:

The 16-bit stack is moved up so that the old NOS becomes the
new TOS. The previous TOS rotates to the bottom of the stack. All
operand values are unchanged.

Status Affected: Sign, Zero

STACK CONTENTS

BEFORE AFTER
A |~——TOS B
B c
c D
D E
E F
F G
G H
H A
b 16— f—16 —

PTOD

PUSH 32-BIT
TOS ONTO STACK

7 6 5 4 3 2 1 0
BinaryCoding:lsr‘0|1|1lo|1]v1|1|

Hex Coding: B7 with sr = 1

37 with sr = 0
Execution Time: 20 clock cycles
Description:

The 32-bit stack is moved down and the previous TOS is
copied into the new TOS location. Operand D is lost. All other
operand values are unchanged. PTOD and PTOF execute the
same operation.

Status Affected: Sign, Zero

STACK CONTENTS

BEFORE AFTER
A TOS B
B c
c D
D A
| 32 -] | 32
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BEFORE AFTER
A TOS A
B A
c B
D c
I 32 | | 32 !
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PTOF

PUSH 32-BIT
TOS ONTO STACK

7 6 5 4 3 2 1 0
BinaryCoding:lsrlOl0|1I0‘1t1‘1|

Hex Coding: 97 withsr = 1

17 with sr = 0
Execution Time: 20 clock cycles
Description:

The 32-bit stack is moved down and the previous TOS is copied
into the new TOS location. Operand D is lost. All other operand
values are unchanged. PTOF and PTOD execute the same op-
eration.

Status Affected: Sign, Zero

STACK CONTENTS

PUPI

PUSH 32-BIT
FLOATING-POINT 77

7 6 5 4 3 2 1 0
1]

T

Binary Coding: | sr | 0 [0 [ 1 [ 1[0 [ 1] 0]
Hex Coding:  9A with sr = 1
1A withsr = 0
Execution Time: 16 clock cycles
Description:

The 32-bit stack is moved down so that the previous TOS oc-
cupies the new NOS location. 32-bit floating-point constant 7 is
entered into the new TOS location. Operand D is lost. Operands
A, B and C are unchanged.

Status Affected: Sign, Zero

STACK CONTENTS

BEFORE AFTER
A TOS A
B A
c B
D o}
| 32 | | 32

PTOS

PUSH 16-BIT
TOS ONTO STACK

7 6 5 4 3 2 1 0
BinaryCoding:‘sr|1\1|1]011'111‘

Hex Coding: F7 with sr = 1

77 withsr = 0
Execution Time: 16 clock cycles
Description:

The 16-bit stack is moved down and the previous TOS is copied
into the new TOS location. Operand H is lost and all other
operand values are unchanged.

Status Affected: Sign, Zero

STACK CONTENTS

BEFORE
A TOS

AFTER

>

I|IOMMOO|®
OIMMoOo|O|m|>»

!
]

{
+
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BEFORE AFTER
A TOS .
B A
c B
D c
I 32 ! | 32 |



PWR

32-BIT
FLOATING-POINT X"

7 6 5 4 3 2 1 0
BinaryCoding:(sr} o] | 0 ] 0 ‘ 1 I,O ] 1 l 11

Hex Coding: 8B with sr = 1

0B with sr = 0
Execution Time: 8290 to 12032 clock cycles
Description:

32-bit floating-point operand B at the NOS is raised to the power
specified by the 32-bit floating-point operand A at the TOS. The
result R of B replaces B and the stack is moved up so that R
occupies the TOS. Operands A, B, and D are lost. Operand C is
unchanged.

The PWR function accepts all input data values that can be
represented in the data format for operand A and all positive
values for operand B. If operand B is non-positive an error status
of 0100 will be returned. The EXP and LN functions are used to
implement PWR using the relationship B* = EXP [A(LN B)].
Thus if the term [A(LN B)] is outside the range of —1.0 x2*® to
+1.0x 2" an error status of 1100 will be returned. Underflow and
overflow conditions can occur.

Accuracy: The error performance for PWR is a function of
the LN and EXP performance as expressed by:
|(Relative Error)pwg|= |(Relative Error)gxp+|A(Absolute
Error)_ n|
The maximum relative error for PWR occurs when
A is at its maximum value while [A(LN B)] is near
1.0 x 2% and the EXP error is also at its maxi-
mum. For most practical applications the relative
error for PWR will be less than 7.0 x 1077

Status Affected: Sign, Zero, Error Field

STACK CONTENTS

BEFORE AFTER
A TOS R
B - c
c
D
| 32 | | 32 |
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SADD

16-BIT
FIXED-POINT ADD

7 2

6 5 4 3
BEEENERE

[oT ]

Binary Coding: ( sr '

Hex Coding: EC with sr = 1

6C withsr = 0
Execution Time: 16 to 18 clock cycles
Description:

16-bit fixed-point two's complement integer operand A at the
TOS is added to 16-bit fixed-point two's complement integer
operand B at the NOS..The result R replaces B and the stack
is moved up so that R occupies the TOS. Operand B is lost.
All other operands are unchanged.

If the addition generates a carry bit it is reported in the status
register. If an overflow occurs it is reported in the status regis-
ter and the 16 least significant bits of the result are returned.
Status Affected: Sign, Zero, Carry, Error Field

STACK CONTENTS

BEFORE AFTER

A T0S R

B o}

C D

D E

E F
A

F G

G H

H A
f— 16— —16—=
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SDIV

16-BIT
FIXED-POINT DIVIDE

7 6 5 4 3 2 1 0
BinaryCoding:’sr‘ 1 ] 1 1 0L1 ] 1 T1 l 11
Hex Coding:  EF with sr = 1

6F with sr = 0

Execution Time: 84 to 94 clock cycles for A # 0

14 clock cycles for A = 0
Description:
16-bit fixed-point two’s complement integer operand B at the
NOS is divided by 16-bit fixed-point two’s complement integer
operand A at the TOS. The 16-bit integer quotient R replaces B
and the stack is moved up so that R occupies the TOS. No
remainder is generated. Operands A and B are lost. All other
operands are unchanged.
If A is zero, R will be set equal to B and the divide-by-zero error
status will be reported.
Status Affected: Sign, Zero, Error Field

STACK CONTENTS
BEFORE AL TER
A TOS R

I|O|IMM O O|®
IOMiM OO

!
t

f—16 —=
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SIN

32-BIT
FLOATING-POINT SINE

7 6 5 4 3 2 1 0
BinaryCoding:‘sr‘OJO]O*O]OI1|O|

Hex Coding: 82 with sr = 1
02 with sr = 0
Execution Time: 3796 to 4808 clock cycles for IAl > 2712
radians
30 clock cycles for |Al = 272 radians
Description:

The 32-bit floating-point operand A at the TOS is replaced by

R, the 32-bit floating-point sine of A. A is assumed to be in

radians. Operands A, C and D are lost. Operand B is un-

changed.

The SIN function will accept any input data value that can be

represented by the data format. All input values are range re-

duced to fall within the interval —#/2 to +#/2 radians.

Accuracy: SIN exhibits a maximum relative error of 5.0 x
1077 for input values in the range of —27 to +27
radians.

Status Affected: Sign, Zero

STACK CONTENTS

BEFORE AFTER
A TOS R
B B
c
D —
| 32 | | 32 |



SMUL

16-BIT FIXED-POINT
MULTIPLY, LOWER

7 6 5 4 3 2 1 0
Binary(:oding:lsr|1 [1 {0]1]1[1‘0

Hex Coding: EE with sr = 1

6E with sr = 0
Execution Time: 84 to 94 clock cycles
Description: :

16-bit fixed-point two's complement integer operand A at the TOS
is multiplied by the 16-bit fixed-point two's complement integer
operand B at the NOS. The 16-bit least significant half of the
product R replaces B and the stack is moved up so that R
occupies the TOS. The most significant half of the product is lost.
Operands A and B are lost. All other operands are unchanged.
The overflow status bit is set if the discarded upper half was
non-zero. If either A or B is the most negative value that can be
represented in the format, that value is returned as R and the
overflow status is set.

Status Affected: Sign, Zero, Error Field

STACK CONTENTS

BEFORE AFTER
| A TOS R
B c
c D
D E
E F
F G
G H
H
16— f—16—
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SMUU

16-BIT FIXED-POINT
MULTIPLY, UPPER

7 6 5 4 3 2 1 0
0

I

Binary Coding: [sr | 1 [ 1 [ 1 [o [ 1 [ 1] o]
Hex Coding: F6 with sr = 1
76 with sr = 0

Execution Time: 80 to 98 clock cycles

Description:

16-bit fixed-point two's complement integer operand A at the
TOS is multiplied by the 16-bit fixed-point two's complement
integer operand B at the NOS. The 16-bit most significant half
of the product R replaces B and the stack is moved up so that
R occupies the TOS. The least significant half of the product
is lost. Operands A and B are lost. All other operands are un-
changed.

If either A or B is the most negative value that can be rep-
resented in the format, that value is returned as R and the
overflow status is set.

Status Affected: Sign, Zero, Error Field

STACK CONTENTS

BEFORE AFTER
A TOS R

I|OMmMOO®
IO mMmMm OO

!
L

16—
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SQRT

32-BIT FLOATING-POINT SQUARE ROOT

7 6 5 4 3 2 1 0
Binary Coding: | s o]o[oJo]o{o|u
Hex Coding: 81 with sr = 1
01 with sr = 0
Execution Time: 782 to 870 clock cycles
Description:

32-bit floating-point operand A at the TOS is replaced by R, the
32-bit floating-point square root of A. Operands A and D are lost.
Operands B and C are not changed.

SQRT will accept any non-negative input data value that can be
represented by the data format. If A is negative an error code of
0100 will be returned in the status register.

Status Affected: Sign, Zero, Error Field

BEFORE  STACK CONTENTS AFTER
A ~—TOS —= R
B B
o} c
D
| 32 fe—32— &

SSUB

16-BIT FIXED-POINT SUBTRACT

7 6 5 4 3 2 1 0
Binary Coding: sr\1l1|0|1‘1lo’1|
Hex Coding: ED with sr = 1
6D with sr = 0
Execution Time: 30 to 32 clock cycles
Description:

16-bit fixed-point two’s complement integer operand A at the
TOS is subtracted from 16-bit fixed-point two’s complement in-
teger operand B at the NOS. The result R replaces B and the
stack is moved up so that R occupies the TOS. Operand B is
lost. All other operands are unchanged.

If the subtraction generates a borrow it is reported in the carry
status bit. If A is the most negative value that can be rep-
resented in the format the overflow status is set. If the result
cannot be represented in the format range, the overflow
status is set and the 16 least significant bits of the result are
returned as R.

Status Affected: Sign, Zero, Carry, Error Field

BEFORE STACK CONTENTS AFTER

A | TOS ——— R

I OMMmMoO|O|®
>|IT(OM|MOIO

L
i
!
i
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TAN

32-BIT FLOATING-POINT TANGENT

7 6 5 4 3 2 A 0
Binary Coding: st [ 0 [0 [ o [o [ 1 [o] o]
Hex Coding: 84 with sr = 1

04 with sr = 0

Execution Time: 4894 to 5886 clock cycles for IAl > 2712

radians

30 clock cycles for IAl = 272 radians
Description:

The 32-bit floating-point operand A at the TOS is replaced by
the 32-bit floating-point tangent of A. Operand A is assumed
to be in radians. A, C and D are lost. B is unchanged.

The TAN function will accept any input data value that can be

represented in the data format. All input data values are

range-reduced to fall within —/4 to +/4 radians. TAN is un-
bounded for input values near odd multiples of #/2 and in
such cases the overflow bit is'set in the status register. For
angles smaller than 2 '2 radians, TAN.returns A as the tan-

gent of A.

Accuracy: TAN exhibits a maximum relative error of 5.0 x
1077 for input data values in the range of —27 to
+27 radians except for data values near odd mul-
tiples of 7/2.

Status Affected: Sign, Zero, Error Field (overflow)

BEFORE  STACK CONTENTS AFTER
A TOS R
B B
c
D
| 32 . | 32 |

XCHD

EXCHANGE 32-BIT STACK OPERANDS

7 6 5 4 3 2 1 0
BinaryCoding:[srlO |1 ] 1 l 1 ’0'0[ 1|
Hex Coding: B9 with sr = 1

39 withsr = 0
Execution Time: 26 clock cycles
Description:

32-bit operand A at the TOS and 32-bit operand B at the NOS
are exchanged. After execution, B is at the TOS and A is at
the NOS. All operands are unchanged. XCHD and XCHF
execute the same operation.
Status Affected: Sign, Zero

BEFORE

STACK CONTENTS AFTER
A TOS B
B A
c c
D D
l—— 32— | 32




XCHF

EXCHANGE 32-BIT
STACK OPERANDS

7 6 5 4 3 2 1 0
Binary Coding: [ sr [ 0 [0 [ 1 [ 1 [o o] 1]
Hex Coding: 99 with sr = 1
19 with sr = 0
Execution Time: 26 clock cycles
Description:

32-bit operand A at the TOS and 32-bit operand B at the NOS
are exchanged. After execution, B is at the TOS and A is at
the NOS. All operands are unchanged. XCHD and XCHF
execute the same operation.
Status Affected: Sign, Zero

STACK CONTENTS

BEFORE AFTER
A TOS B
B A
c c
D D
| 32 | 32—
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XCHS

EXCHANGE 16-BIT
STACK OPERANDS

BinaryCoding:\s7r|(13|15’:‘?‘§I;|?‘

Hex Coding:  F9 with sr = 1

79 with sr = 0 -
Execution Time: 18 clock cycles
Description:

16-bit operand A at the TOS and 16-bit operand B at the NOS
are exchanged. After execution, B is at the TOS and A is at
the NOS. All operand values are unchanged.

Status Affected: Sign, Zero

STACK CONTENTS

BEFORE
A TOS

AFTER

@

I|OIMmMOIO ®
I OMMmMOoOlO|>»

!
4
!
i



AmEG611A

MAXIMUM RATINGS beyond which useful life may be impaired

Storage Temperature

—65t0 +1

50°C

VDD with Respect to VSS

~0.5V to +15.0V

VCC with Respect to VSS -0.5V to +7.0V
All Signal Voltages with Respect to VSS -0.5Vto +7.0V
Power Dissipation (Package Limitation) 2.0W

The products described by this specification include internal circuitry designed to protect input devices from damaging accumulations of

static charge. It is suggested, nevertheless, that conventional precautions be observed during storage, handling and use in order to

avoid exposure to excessive voltages. )

OPERATING RANGE

Part Number Ambient Temperature Vss vcC VDD
Am38511ADC 0°C < Tp < 70°C ov +5.0V £5% +12V £5%

Am8511A-1DC 0°C < Tp < 70°C oV +5.0V 5% +12V 5%
Am9511A-4DC 0°C < Tp < 70°C ov +5.0V £5% +12V £5%
Am9511ADI —40°C < Ty < 85°C ov +5.0V £10% +12V +10%
Am9511A-1DI —40°C < Tp < 85°C ov +5.0V £10% +12V £10%
Am9511ADM —55°C < Tp =< 125°C ov +5.0V £10% +12V =10%
Am8511A-1DM —55°C < Tp < 125°C ov +5.0V £10% +12V £10%

ELECTRICAL CHARACTERISTICS Over Operating Range (Note 1)

Parameters Description Test Conditions Min. Typ. Max. Units
VOH Output HIGH Voltage IOH = —-200uA 3.7 Volts
VOL Output LOW Voltage I0L = 3.2mA 0.4 Volts
VIH Input HIGH Voltage 2.0 VvCC Volts
VIL Input LOW Voltage -0.5 0.8 Volts
X input Load Current VSS = Vi< VCC +=10 pA
10z Data Bus Leakage VO = 04v 10 nA

VO = VCC 10
Ta = +25°C 50 90
ICC VCC Supply Current Ta =0°C 95 mA
Tp = —55°C 100
Ta = +25°C 50 90
IDD VDD Supply Current Ta =0C 95 mA
Tp = -55°C 100
CcO Output Capacitance 10 pF
Cl Input Capacitance fc = 1.0MHz, Inputs = OV 8 pF
Cio 1/O Capacitance 10 12 pF
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Am9511A

SWITCHING CHARACTERISTICS

Am9511A Am9511A-1 Am9511A-4
Parameters Description Min Max Min Max Min Max Units
TAPW EACK LOW Pulse Width 100 75 50 ns
TCDR C/D to RD LOW Set-up Time 0 0 0 ns
TCDW C/D to WR LOW Set-up Time 0 0 0 ns
TCPH Clock Pulse HIGH Width 200 140 100 ns
TCPL Clock Pulse LOW Width 240 160 120 ns
CS LOW to RD LOW
TCSR Set-up Time 0 0 0 ns
TCSW CS LOW to WR LOW Set-up Time 0 0 0 ns
TCY Clock Period 480 5000 320 3300 250 2500 ns
Data Bus Stable to WR
TDW HIGH Set-up Time 150 100 (Note 9) 100 ns
TEAE EACK LOW to END HIGH Delay 200 175 150 ns
TEPW END LOW Pulse Width (Note 4) 400 300 200 ns
Data Bus Output Valid to
ToP PAUSE HIGH Delay 0 0 0 ns
TPPWR PAUSE LOW Pulse Data 35TCY+50 | 5,5TCY+300 | 35TCY+50 | 55TCY+200| 35TCY+50 | 55TCY+200|
Width Read (Note 5) Status 1.5TCY+50 | 3.5TCY+300 [ 1.5TCY+50 | 3.5TCY+200| 1.5TCY+50 | 3.5TCY+200
PAUSE LOW Pulse Width Write
TPPWW | ot 8) 50 50 50 ns
PAUSE HIGH to RD
TPR HIGH Hold Time 0 0 0 ns
PAUSE HIGH to WR
TPW HIGH Hold Time 0 0 ° ns
TRCD RD HIGH to C/D Hold Time 0 0 0 ns
TRCS RD HIGH to CS HIGH Hold Time 0 0 0 ns
TRO RD LOW to Data Bus ON Delay 50 50 25 ns
RD LOW to PAUSE LOW
TRP Delay (Note 6) 150 100 (Note 9) 100 ns
TRZ RD HIGH to Data Bus OFF Delay 50 200 50 150 25 100 ns
TSAPW SVACK LOW Pulse Width 100 75 50 ns
SVACK LOW to SVREQ
TSAR LOW Delay 300 200 150 ns
TWCD WR HIGH to C/D Hold Time 60 30 30 ns
TWCS WR HIGH to CS HIGH Hold Time 60 30 ' 30 ns
TWD WR HIGH to Data Bus Hold Time 20 20 20 ns
™wi Write Inactive Time Command 3TCY 3TCY 3TCY
e Inactive T Data 4TCY 4TCY 4TCY ns
'WR LOW to PAUSE LOW
Twe Delay (Note 6) 150 100 (Note 9) 100 ns
Notes: 1. Typical values are for Ty = 25°C, nominal supply voltages and nominal processing parameters.

. Switching parameters are listed in alphabetical order.
. Test conditions assume transition times of 20ns or less, output loading of one TTL gate plus 100pF and timing reference levels of 0.8V

and 2.0V.

. END low pulse width is specified for EACK tied to VSS. Otherwise TEAE applies.
. Minimum values shown assume no previously entered command is being executed for the data access. If a previously entered command is

being executed, PAUSE LOW Pulse Width is the time to complete execution plus the time shown. Status may be read at any time without
exceeding the time shown.

. PAUSE is pulled low for both command and data operations.
. TEX is the execution time of the current command (see the Command Execution Times table).
. PAUSE low pulse width is less than 50ns when writing into the data port or the control port as long as the duty requirement (TWI) is observed

and no previous command is being executed. TWI may be safely violated up to 500ns as long as the extended TPPWW that results is
observed. If a previously entered command is being executed, PAUSE LOW Pulse Width is the time to complete execution plus the
time shown.

150ns for the Am9511A-1DM.
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24

0.45

SWITCHING WAVEFORMS

INPUT WAVEFORMS FOR AC TESTS
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APPLICATION INFORMATION

The diagram in Figure 2 shows the interface connections for
the Am39511A APU with operand transfers handled by an
Am9517 DMA controller, and CPU coordination handled by an
Am9519 Interrupt Controller. The APU interrupts the CPU to
indicate that a command has been completed. When the per-
formance enhancements provided by the DMA and Interrupt

operations are not required, the APU interface can be
simplified as shown in Figure 1. The Am9511A APU is de-
signed with a general purpose 8-bit data bus and interface
control so that it can be conveniently used with any general

8-bit processor.

ADDRESS BUS ¥

O

[
Am9511A
ARITHMETIC
Kk PROCESSOR

UNIT

SYSTEM DATA BUS

)

01892B-9

Figure 1. Am9511A Minimum Configuration Example.
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PHYSICAL DIMENSIONS
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AmM9512

Floating Point Processor

DISTINCTIVE CHARACTERISTICS

® & 60606600 6 06 0 0 0

Single (32-bit) and double (64-bit) precision capability
Add, subtract, multiply and divide functions
Compatible with proposed IEEE format

Easy interfacing to microprocessors

8-bit data bus

Standard 24-pin package

12V and 5V power supplies

Stack oriented operand storage

Direct memory access or programmed I/O Data Transfers
End of execution signal

Error interrupt

All inputs and outputs TTL level compatible
Advanced N-channel silicon gate MOS technology

GENERAL DESCRIPTION

The Am9512 is a high performance floating-point processor unit
(FPU). It provides single precision (32-bit) and double precision
(64-bit) add, subtract, multiply and divide operations. It can be
easily interfaced to enhance the computational capabilities of
the host microprocessor.

The operand, result, status and command information transfers
take place over an 8-bit bidirectional data bus. Operands are
pushed onto an internal stack by the host processor and a com-
mand is issued to perform an operation on the data stack. The
results of this operation are available to the host processor by
popping the stack.

Information transfers between the Am38512 and the host proces-
sor can be handled by using programmed I/O or direct memory
access techniques. After completing an operation, the Am9512
activates an “end of execution” signal that can be used to inter-
rupt the host processor.
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8-BIT BUS
’ END
STATUS 16-BIT INTERFACE RESET
MICROINSTRUCTION [~
REGISTER REGISTER CONTROL o
53
COMMAND BH
REGISTER 4__5“’
PROGRAM _,\ CONTROL ROM WR
COUNTER ._.I /] 768 X 16 f-—
oee | SUBROUTINE FAUSE
087 STACK
——— 3X10
MOS-203
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CONNECTION DIAGRAM

Top View
vss 1® d 24 [ ] END
vec[ ]2 23 [ ]ck
EACK [ |3 22 [ ] RESET
SVACK [ 4 2[]cb
svrea [ s 20 [ ]RD
ERR[ |6 19 [ _JWR
conor ., Amos12 e
peo[ |8 17 [ ] PAUSE
pBi |9 16 [ ] vbD
pB2 [ 10 15 [ ] oB?7
oB3 [ |n 14 ] pB6
DB4 [j 12 13[ ] oBs

Note: Pin 1 is marked for orientation.

MOS-204

INTERFACE SIGNAL DESCRIPTION
VCC: +5V Power Supply

VDD: +12V Power Supply

VSS: Ground

CLK (Clock, Input)

An external timing source connected to the CLK input provides
the necessary clocking.

RESET (Reset, Input)

A HIGH on this input causes initialization. Reset terminates any
operation in progress, and clears the status register to zero. The
internal stack pointer is initialized and the contents of the stack
may be affected. After a reset the END output, the ERR output
and the SVREQ output will be LOW. For proper initialization,
RESET must be HIGH for at least five CLK periods following
| stable power supply voltages and stable clock.

C/D {Command/Data Seiect, input)
The C/D input together with the RD and WR inputs determines the
type of transfer to be performed on the data bus as follows:

c/D RD WR Function
L H L Push data byte into the stack
L L H Pop data byte from the stack
H H L Enter command
H L H Read Status
X L L Undefined
L = LOW
H = HIGH
X = DON'T CARE

END (End of Execution, Output)

A HIGH on this output indicates that execution of the current
command is complete. This output will be cleared LOW by ac-
tivating the EACK input LOW or performing any read or write
operation or device initialization using the RESET. If EACK is tied
LOW, the END output will be a pulse (see EACK description).

Reading the status register while a command execution is in
progress is allowed. However any read or write operation clears

the flip-flop that generates the END output. Thus such continu-
ous reading could conflict with internal logic setting of the END
flip-flop at the end of command execution.

EACK (End Acknowledge, Input)

This input when LOW makes the END output go LOW. As men-
tioned earlier HIGH on the END output signals completion of a
command execution. The END signal is derived from an internal
flip-flop which is clocked at the completion of a command. This
flip-flop is clocked to the reset state when EACK is LOW. Con-
sequently, if EACK is tied LOW, the END output will be a pulse
that is approximately one CLK period wide.

SVREQ (Service Request, Output)

A HIGH on this output indicates completion of a command. In
this sense this output is the same as the END output. However,
the Service Bit in the Command Register determines whether
the SVREQ output will go HIGH at the completion of a com-
mand. This bit must be 1 for SVREQ to go HIGH. The SVREQ
can be cleared (i.e., go LOW) by activating the SVACK input
LOW or initializing the device using the RESET. Also, the
SVREQ will be automatically cleared after completion of any
command that has the service request bit as 0.

SVACK (Service Acknowledge, Input)

A LOW on this input clears SVREQ. If the SVACK input is per-
manently tied LOW, it will conflict with the internal setting of the
SVREQ output. Thus the SVREQ indication cannot be relied
upon if the SVACK is tied LOW.

DBO0-DB7 (Data Bus, Input/Output)

These eight bidirectional lines are used to transfer command,
status and operand information between the device and the host
processor. DBO is the least significant and DB7 is the most
significant bit position. HIGH on a data bus line corresponds to 1
and LOW corresponds to 0.

When pushing operands on the stack using the data bus, the least
significant byte must be pushed first and most significant byte
last. When popping the stack to read the result of an operation,
the most significant byte will be available on the data bus first and
the least significant byte will be the last. Moreover, for pushing
operands and popping results, the number of transactions must
be equal to the proper number of bytes appropriate for the chosen
format. Otherwise, the internal byte pointer will not be aligned
properly. The Am9512 single precision format requires 4 bytes
and double precision format requires 8 bytes.

ERR (Error, Output)

This output goes HIGH to indicate that the current command
execution resulted in an error condition. The error conditions
are: attempt to divide by zero, exponent overflow and exponent
underflow. The ERR output is cleared LOW on read status reg-
ister operation or upon RESET.

The ERR output is derived from the error bits in the status
register. These error bits will be updated internally at an appro-
priate time during a command execution. Thus ERR output going
HIGH may not correspond with the completion of a command.
Reading of the status register can be performed while a com-
mand execution is in progress. However it should be noted that
reading the status register clears the ERR output. Thus reading
the status register while a command execution in progress may
result in an internal conflict with the ERR output.
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‘TS (Chip Select, Input)

This input must be LOW to accomplish any read or write operation
to the Amg512.

To perform a write operation, appropriate data is presented on
DBO through DB7 lines, appropriate logic level on the C/D input
and the CS input is made LOW. Whenever WR and RD inputs
are both HIGH and CS is LOW, PAUSE goes LOW. However
actual writing into the Am9512 cannot start untii WR is made
LOW. After initiating the write operation by the HIGH to LOW
transition on the WR input, the PAUSE output will go HIGH
indicating the write operation has been acknowledged. The WR
input can go H|GH after PAUSE goes HIGH. The data lines, C/D
input and the CS input can change when appropriate hold time
requirements are satisfied. See write timing diagram for details.

To perform a read operation an appropriate logic level is estab-
lished on the C/D input and CS is made LOW. The PAUSE output
goes LOW because WR and RD inputs are HIGH. The read
operation does not start until the RD input goes LOW. PAUSE will
go HIGH indicating that read operation is complete and the re-
quired information is available on the DBO through DB7 lines. This
information will remain on the data lines as long as RD is LOW.
The RD input can return HIGH anytime after PAUSE goes
HIGH. The CS input and C/D input can change anytime after RD
returns HIGH. See read timing diagram for details. If the CS is
tied LOW permanently, PAUSE will remain LOW until the next
Am9512 read or write access.

RD (Read, Input)

A LOW on this input is used to read information from an internal
location and gate that information onto the data bus. The CS input
must be LOW to accomplish the read operation. The C/D input
determines whatinternal location is of interest. See C/D, CSinput
descriptions and read timing diagram for details. If the END

output was HIGH, performing any read operation will make the
END output go LOW after the HIGH to LOW transition of the RD
input (assuming CS is LOW). If the ERR output was HIGH per-
forming a status register read operation will make the ERR out-
put LOW. This will happen after the HIGH to LOW transition of
the RD input (assuming CS is LOW).

WR (Write, Input)

A LOW on this input is used to transfer information from the data
bus into an internal location. The CS must be LOW to accomplish
the write operation. The C/D determines which internal location is
to be written. See C/D, CS input descriptions and write timing
diagram for details.

If the END output was HIGH, performing any write operation will
make the END output go LOW after the LOW to HIGH transition of
the WR input (assuming CS is LOW).

PAUSE (Pause, Output)

This output is a handshake signal used while performing read or
write transactions with the Am9512. If the WR and RD inputs are
both HIGH, the PAUSE output goes LOW with the CS input in
anticipation of a transaction. If WR goes LOW to initiate a write
transaction with proper signals established on the DB0-DB7, c/D
inputs, the PAUSE will return HIGH indicating that the write
operation has been accomplished. The WR can be made HIGH
after this event. On the other hand, if a read operation is desired,
the RD input is made LOW after activating CS LOW and estab-
lishing proper C/D input. (The PAUSE will go LOW in response to
CS going LOW.) The PAUSE will return HIGH indicating comple-
tion of read. The RD can return HIGH after this event. It should be
noted that a read or write operation can be initiated without any
regard to whether a command execution is in progress or not.
Proper device operation is assured by obeying the PAUSE output
indication as described.

FUNCTIONAL DESCRIPTION

Major functional units of the Am9512 are shown in the block
diagram. The Am9512 employs a microprogram controlled stack
oriented architecture with 17-bit wide data paths.

The Arithmetic Unit receives one of its operands from the
Operand Stack. This stack is an eight word by 17-bit two port
memory with last in — first out (LIFO) attributes. The second
operand to the Arithmetic Unit is.supplied by the internal 17-bit
bus. In addition to supplying the second operand, this bidirec-
tional bus also carries the results from the output of the Arithmetic
Unit when required. Writing into the Operand Stack takes place
from this internal 17-bit bus when required. Also connected to this
bus are the Constant ROM and Working Registers. The ROM
provides the required constants to perform the mathematical
operations while the Working Registers provide storage for the
intermediate values during command execution.

Communication between the external world and the Am9512
takes place on eight bidirectional input/output lines, DBO through

DB7 (Data Bus). These signals are gated to the internal 8-bit bus
through appropriate interface and buffer circuitry. Multiplexing
facilities exist for bidirectional communication between the inter-
nal eight and 17-bit buses. The Status Register and Command
Register are also located on the 8-bit bus.

The Am9512 operations are controlled by the microprogram
contained in the Control ROM. The Program Counter supplies the
microprogram addresses and can be partially loaded from the
Command Register. Associated with the Program Counter is the
Subroutine Stack where return addresses are held during sub-
routine calls in the microprogram. The Microinstruction Register
holds the current microinstruction being executed. The register
facilitates pipelined microprogram execution. The Instruction De-
code logic generates various internal control signals needed for
the Am9512 operation.

The Interface Control logic receives several external inputs and
provides handshake related outputs to facilitate interfacing the
Am9512 to microprocessors.

COMMAND FORMAT

The Operation of the Am9512 is controlled from the host proces-
sor by issuing instructions called commands. The command for-
mat is shown below:

SVREQ OP CODE
ENB
N W AN I
7 6 5 4 3 2 1 0

The command consists of 8 bits; the least significant 7 bits specify
the operation to be performed as detailed in the accompanying

table. The most significant bit is the Service Request Enable bit.
This bit must be a 1 if SVREQ is to go high at end of executing a
command.

The Am9512 commands fall into three categories: Single preci-
sion arithmetic, double precision arithmetic and data manipula-
tion. There are four arithmetic operations that can be performed
with single precision (32-bit), or double precision (64-bit)
floating-point numbers: add, subtract, multiply and divide. These
operations require two operands. The Am9512 assumes that
these operands are located in the internal stack as Top of Stack
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(TOS) and Next on Stack (NOS). The result will always be re-
turned to the previous NOS which becomes the new TOS. Re-
sults from an operation are of the same precision and format as
the operands. The results will be rounded to preserve the accu-
racy. The actual data formats and rounding procedures are de-
scribed in a later section. In addition to the arithmetic operations,
the Am9512 implements eight data manipulating operations.
These include changing the sign of a double or single precision

operand located in TOS, exchanging single precision operands
located at TOS and NOS, as well as copying and popping single
or double precision operands. See also the sections on status
register and operand formats.

The Execution times of the Am9512 commands are all data
dependent. Table 2 shows one example of each command exe-
cution time:

Table 1. Command Decoding Table.

Command Bits

7 6 5 4 3 2 1 0| Mnemonic Description

X 0 0 0 0 0 0 1 SADD Add TOS to NOS Single Precision and result to NOS. Pop stack.

X 0 0 0 0 0 1 O SsuB Subtract TOS from NOS Single Precision and result to NOS. Pop stack.

X 0 0 0 0 o0 1 SMUL Multiply NOS by TOS Single Precision and result to NOS. Pop stack.

X 0 0 0 0 1t 0 O SDIV Divide NOS by TOS Single Precision and result to NOS. Pop stack.

X 0 0 0 0 1 O CHSS Change sign of TOS Single Precision operand.

X 0 0 0 0 1 1 O PTOS Push Single Precision operand on TOS to NOS.

X 0 0 0 0 1t POPS Pop Single Precision operand from TOS. NOS becomes TOS.

X 0 0 0 1 0 0 O XCHS Exchange TOS with NOS Single Precision.

X o 1 0 1t 1 0 CHSD Change sign of TOS Double Precision operand.

X 0 1 0 1t 1t 1 0 PTOD Push Double Precision operand on TOS to NOS.

X 0 1t 0o 1 1 1 POPD Pop Double Precision operand from TOS. NOS becomes TOS.

X 0 0 0 0 0o 0 O CLR CLR status.

X 0 1 0 1 0 O DADD Add TOS to NOS Double Precision and result to NOS. Pop stack.

X 0 1 0o 1 0o 1 0 DsuB Subtract TOS from NOS Double Precision and result to NOS. Pop stack.

X 0 1t 0o 1 0 1 DMUL Multiply NOS by TOS Double Precision and result to NOS. Pop stack.

X 0 1 0 1t 1 0 O DDIV Divide NOS by TOS Double Precision and result to NOS. Pop Stack.

Notes: X = Don't Care Operation for bit combinations not listed above is undefined.

Table 2. Am9512 Execution Time in Cycles.
Single Precision Double Precision
Min Typ Max Min Typ Max

Add 58 220 512 Add 578 1200 3100
Subtract 56 220 512 Subtract 578 1200 3100
Multiply 192 220 254 Multiply 1720 1770 1860
Divide 228 240 264 Divide 4560 4920 5120

Note: Typical for add and subtract, assumes the operands are within six decimal orders of magnitude. Max is derived from the

maximum execution time of 1000 executions with random 32-bit or 64-bit patterns.

Table 3. Some Execution Examples.

Command TOS NOS Result Clock periods
SADD 3F800000 3F800000 40000000 58
SsuB 3F800000 3F800000 00000000 56
SMUL 40400000 3FC00000 40900000 198
SDIV 40000000 3F800000 3F000000 228
CHSS 3F800000 - BF800000 10
PTOS 3F800000 - - 16
POPS 3FB00000 - - 14
XCHS 3F800000 4000000 - 26
CHSD 3FF0000000000000 - BFF0000000000000 24
PTOD 3FF0000000000000 _ - 40
POPD 3FF0000000000000 - 26
CLR 3FF0000000000000 - - 4
DADD 3FF00000A0000000 8000000000000000 3FFO0000A0000000 578
DsuB 3FF00000A0000000 8000000000000000 3FF00000A0000000 578
DMUL BFF8000000000000 3FF8000000000000 C€002000000000000 1748
DDIV BFF8000000000000 3FF8000000000000 BFF0000000000000 4560

Note: TOS, NOS and Result are in hexadecimal; Clock period is in decimal.
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COMMAND INITIATION

After properly positioning the required operands in the stack, a
command may beissued. The procedure for initiating acommand
execution is as follows:

1. Establish appropriate command on the DB0-DB7 lines.

2. Establish HIGH on the C/D input.

3. Establish LOW on the CS input. Whenever WR and RD inputs
are HIGH the PAUSE output follows the CS input. Hence
PAUSE will become LOW.

4. Establish LOW on the WR input after an appropriate set up
time (see timing diagrams).

5. Sometime after the HIGH to LOW level transition of WR input,
the PAUSE output willbecome HIGH to acknowledge the write
operation. The WR input can return to HIGH anytime after
PAUSE goes HIGH. The DB0-DB7, C/D and CS inputs are
allowed to change after the hold time requirements are satis-
fied (see timing diagram).

An attempt to issue a new command while the current command
execution is in progress is allowed. Under these circumstances,
the PAUSE output will not go HIGH until the current command
execution is completed.

OPERAND ENTRY

The Am9512 commands operate on the operands located at the
TOS and NOS and results are returned to the stack at NOS and
then popped to TOS. The operands required for the Am9512 are
one of two formats — single precision floating-point (4 bytes) or
double precision floating-point (8 bytes). The result of an opera-
tion has the same format as the operands. In other words, op-
erations using single precision quantities always result in a
single precision result while operations involving double preci-
sion quantities will result in double precision result.

Operands are always entered into the stack least significant byte
first and most significant byte last. The following procedure must
be followed to enter operands into the stack:

1. The lower significant operand byte is established on the
DBO0-DB?7 lines.

2. ALOW is established on the C/D input to specify that data is to
be entered into the stack. - -

3. The CS inputis made LOW. Whenever the WR and RD inputs
are HIGH, the PAUSE output will follow the CS input. Thus
PAUSE output will become LOW.

4. After appropriate set up time (see timing diagrams), the WR
input is made LOW.

5. Sometime after this event, PAUSE will return HIGH to indi-
cate that the write operation has been acknowledged.

6. Anytime after the PAUSE output goes HIGH the WR input can
be made HIGH. The DB0-DB7, C/D and CS inputs can change
after appropriate hold time requirements are satisfied (see
timing diagrams).

The above procedure must be repeated until all bytes of the
operand are pushed into the stack. It should be noted that for
single precision operands 4 bytes should be pushed and 8 bytes
must be pushed for double precision. Not pushing all the bytes of
a quantity will result in byte pointer misalignment.

The Am9512 stack can accommodate 4 single precision quan-
tities or 2 double precision quantities. Pushing more quantities
than the capacity of the stack will result in loss of data which is
usual with any LIFO stack.

REMOVING THE RESULTS

Result from an operation will be available atthe TOS. Results can
be transferred from the stack to the data bus by reading the stack.

When the stack is popped for results, the most significant byte is
available first and the least significant byte last. A resultis always
of the same precision as the operands that produced it. Thus
when the result is taken from the stack, the total number of bytes
popped out should be appropriate with the precision — single
precision results are 4 bytes and double precision results are 8
bytes. The following prodedure must be used for reading the
result from the stack:

1. A LOW is established on the C/D input.

2. The CSinputis made LOW. When WR and RD inputs are both
HIGH, the PAUSE output follows the CS input, thus PAUSE
will be LOW.

3. After appropriate set up time (see timing diagrams), the RD
input is made LOW.

4. Sometime after this, PAUSE will return HIGH indicating that
the data is available on the DB0-DB7 lines. This data will
remain on the DBO-DB?7 lines as long as the RD input remains
LOW.

5. Anytime after PAUSE goes HIGH, the RD input can return
HIGH to complete transaction.

6. The CS and C/D inputs can change after appropriate hold time
requirements are satisfied (see timing diagram).

7. Repeat this procedure until all bytes appropriate for the preci-
sion of the result are popped out.

Reading of the stack does not alter its data; it only adjusts the byte
pointer. If more data is popped than the capacity of the stack, the
internal byte pointer will wrap around and older data will be read
again, consistent with the LIFO stack.

READING STATUS REGISTER

The Am9512 status register can be read without any regard to
whether a command is in progress or not. The only implication
that has to be considered is the effect this might have on the END
and ERR outputs discussed in the signal descriptions.

The following procedure must be followed to accomplish status
register reading.

1. Establish HIGH on the C/D input.

2. Establish LOW on the CS input. Whenever WR and RD in-
puts are HIGH, PAUSE will follow the CS input. Thus,
PAUSE will go LOW. o

3. After appropriate set up time (see timing diagram) RD is
made LOW.

4. Sometime after the HIGH to LOW transition of RD, PAUSE
will become HIGH indicating that status register contents are
available on the DB0-DB?Y lines. These lines will contain this
information as long as RD is LOW. .

5. The RD input can be returned HIGH anytime after PAUSE
goes HIGH.

6. The C/D input and CS input can change after satisfying ap-
propriate hold time requirements (see timing diagram).

DATA FORMATS

The Am9512 handles floating-point quantities in two different
formats — single precision and double precision. The single pre-
cision quantities are 32-bits long as shown below.

— IMPLIED BIT

31 30 23 22 2 1 0

Bit 31:

S = Sign of the mantissa. 1 represents negative and O repre-
sents positive.
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Bits 23-30

E = These 8-bits represent a biased exponent. The bias is
27 -1 =127

Bits 0-22

M = 23-bit mantissa. Together with the sign bit, the mantissa
represents a signed fraction in sign-magitude notation.
There is an implied 1 beyond the most significant bit (bit 22)
of the mantissa. In other words, the mantissa is assumed to
be a 24-bit normalized quantity and the most significant bit
which will always be 1 due to normalization is implied. The
Amg512 restores this implied bit internally before performing
arithmetic; normalizes the result and strips the implied bit
before returning the results to the external data bus. The
binary point is between the implied bit and bit 22 of the
mantissa.

The quantity N represented by the above notation is

‘———- Bias

——

Binary Point
N=(-1)5 28-("-1 (1‘.M)
Provided E # 0 or all 1’s.
A double precision quantity consists of the mantissa sign bit(s),
an 11 bit biased exponent (E), and a 52-bit mantissa (M). The bias

for double precision quantities is 2'% — 1. The double precision
format is illustrated below.

— IMPLIED BIT

63 62 52 51 2 1 0

Bit 63:
S = Sign of the mantissa. 1 represents negative and O repre-
sents positive.

Bits 52-62
E = These 11 bits represent a biased exponent. The bias is
210 — 1 =1023.

Bit 0-51

M = 52-bit mantissa. Together with the sign bit, the mantissa
represents a signed fraction in sign-magnitude notation.
There is an implied 1 beyond the most significant bit (bit 51)
of the mantissa. In other words, the mantissa is assumed to
a 53-bit normalized quantity and the most significant bit,
which will always be a 1 due to normalization, is implied. The
Am9512 restores this implied bit internally before perform-
ing arithmetic; normalizes the result and strips the implied bit
before returning the result to the external data bus. The
binary point is between the implied bit and bit 51 of the
mantissa.

The quantity N represented by the above notation is
Bias

—— Binary point
N=(-1)8 25—4210—1) (1{M)

Provided E # 0 or all 1's.

STATUS REGISTER

The Am9512 contains an 8-bit status register with the following
format.

DIVIDE
EXCEPTION
D

EXPONENT
UNDERFLOW
u

EXPONENT
OVERFLOW
\

BUSY ZERO RESERVED

SISN RESERVED

7 6 5 4 3 2 1 0

Bit 0 and bit 4 are reserved. Occurrence of exponent oerflow (V),
exponent underflow (U) and divide exception (D) are indicated
by bits 1, 2 and 3 respectively. An attempt to divide by zero is the
only divide exception. Bits 5 and 6 represent a zero result and
the sign of a result respectively. Bit 7 (Busy) of the status regis-
ter indicates if the Am9512 is currently busy executing a com-
mand. All the bits are initialized to zero upon reset. Also,
executing a CLR (Clear Status) command will result in all zero
status register bits. A zero in Bit 7 indicates that the Am9512 is
not busy and a new command may be initiated. As soon as a
new command is issued, Bit 7 becomes 1 to indicate the device
is busy and remains 1 until the command execution is complete,
at which time it will become 0. As soon as a new command is
issued, status register bits 0, 1, 2, 3, 4, 5 and 6 are cleared to
zero. The status bits will be set as required during the command
execution. Hence, as long as bit 7 is 1, the remainder of the
status register bit indications should not be relied upon un-
less the ERR occurs. The following is a detailed status bit
description. -

Bit 0 Reserved

Bit 1 Exponent overflow (V): When 1, this bit indicates that
exponent overflow has occurred. Cleared to zero
otherwise.

Exponent Underflow (U): When 1, this bit indicates that
exponent underflow has occurred. Cleared to zero
otherwise.

Divide Exception (D): When 1, this bit indicates that an
attempt to divide by zero is made. Cleared to zero
otherwise.

Reserved

Zero (Z): When 1, this bitindicates that the result returned
to TOS after a command is all zeros. Cleared to zero
otherwise.

Sign (S): When 1, this bit indicates that the result returned
to TOS is negative. Cleared to zero otherwise.

Busy: When 1, this bit indicates the Am9512 is in the
process of executing acommand. It will become zero after
the command executicon is complete.

Bit 2

Bit 3

Bit 4
Bit 5

Bit 6

Bit 7

All other status register bits are valid when the Busy bit is zero.

ALGORITHMS OF FLOATING-POINT ARITHMETIC

1. Floating Point to Decimal Conversion
As an introduction to floating-point arithmetic, a brief descrip-
tion of the Decimal equivalent of the Am9512 floating-point
format should help the reader to understand and verify the
validity of the arithmetic operations. The Am9512 single preci-
sion format is used for the following discussions. With a minor
modification of the field lengths, the discussion would also
apply to the double precision format.

There are three parts in a floating point number:

a. The sign — the sign applies to the sign of the number. Zero
means the number is positive or zero. One means the
number is negative.
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b. The exponent — the exponent represents the magnitude of
the number. The Am9512 single precision format has an
excess 127, notation which means the code representa-
tion is 12744 higher than the actual value. The following are
a few examples of actual versus coded exponent.

Actual Coded

+1274¢ +2544¢
0 12749

-1 2610 +1 10

¢. The mantissa — the mantissa is a 23-bit value with the

* binary point to the left of the most significant bit. There is a

hidden 1 to the left of the binary point so the mantissa is
always less than 2 and greater than or equal to 1.

To find the Decimal equivalent of the floating point number,
the mantissa is multiplied by 2 to the power of the actual
exponent. The number is negated if the sign bit = 1. The
following are two examples of conversion:

Example 1

Floating Point No. =010000011110000000000000000000008B

Sign Exponent Mantissa
Coded Exponent = 100000118
Actual Exponent = 10000011B -01111111B=00000100B = 44
Mantissa = 1.110000000000000000000008B
=1+ 12+ 14 =175
Decimal No. = 2% x 1.75 = 16 x 1.75 = 28,

Example 2

Floating PointNe. = 101111010011000000000000000000008B

Sign Exponent Mantissa
Code Exponent = 011110108
ActualExponenl=011110108—01111111B:11111011B:—5m
Mantissa = 1.01100000000000000000000B

=14 1/4 +1/8 = 1.375,,

Decimal No. = ~27° x 1.375 = —.04296875,,

2. Unpacking of the Floating-Point Numbers

The Am9512 unpacks the floating point number into three
parts before any of the arithmetic operation. The number is
divided into three parts as described in Section 1. The sign and
exponent are copied from the original number as 1 and 8-bit
numbers respectively. The mantissa is stored as a 24-bit
number. The least significant 23 bits are copied from the
original number and the MSB is set to 1. The binary point is
assumed to the right of the MSB.

The abbreviations listed below are used in the following sec-
tions of algorithm description:

SIGN - Sign of Result

EXP — Exponent of Result

MAN - Mantissa of Result

SIGN (TOS) — Sign of Top of Stack

EXP (TOS) — Exponent of Top of Stack
MAN (TOS) - Mantissa of Top of Stack
SIGN (NOS) — Sign of Next on Stack
EXP (NOS) — Exponent of Next on Stack
MAN (NOS) — Mantissa of Next on Stack

3. Floating-Point Add/Subtract
The floating-point add and subtract essentially use the same
algorithm. The only difference is that floating-point subtract
changes the sign of the floating-point number at top of stack
and then performs the floating-point add.

The following is a step by step description of a floating-point
add algorithm (Figure 1):

a. Unpack TOS and NOS.
The exponent of TOS is compared to the exponent of
NOS.
If the exponents are equal, go to step f.
Right shift the mantissa of the number with the smaller
exponent.
Increment the smaller exponent and go to step b.
Set sign of result to sign of larger number.
Set exponent of result to exponent of larger number.
If sign of the two numbers are not equal, go to m.
Add Mantissas.
Right shift resultant mantissa by 1 and increment expo-
nent of result by 1.
k. 1f MSB of exponent changes from 1 to O as a result of the
increment, set overflow status.
Round if necessary and exit.
. Subtract smaller mantissa from larger mantissa.
Left shift mantissa and decrement exponent of result.
If MSB of exponent changes from 0 to 1 as a result of the
decrement, set underflow status and exit.
p. If the MSB of the resultant mantissa = 0, go to n.
q. Round if necessary and exit.

c

a o

T~ sa o

23~

. Floating-Point Multiply

Floating-point multiply basically involves the addition of the
exponents and multiplication of the mantissas. The following
is a step by step description of a floating multiplication al-
gorithm (Figure 2):

a. Check if TOS or NOS = 0.

b. If either TOS or NOS = 0, Set result to 0 and exit.

¢. Unpack TOS and NOS.

d. Convert EXP (TOS) and EXP (NOS) to unbiased form.
EXP (TOS) = EXP (TOS) — 12749
EXP (NOS) = EXP (NOS) -127,,

e. Add exponents.
EXP = EXP (TOS) + EXP (NOS)

f. It MSB of EXP (TOS) = MSB of EXP (NOS) = 0 and MSB
of EXP = 1, then set overflow status and exit.

g. IfMSB of EXP (TOS) = MSB of EXP (NOS) = 1 and MSB
of EXP = 0, then set underflow status and exit.

h. Convert Exponent back to biased form.
EXP = EXP + 1274

i. Ifsignof TOS = sign of NOS, setsignofresult to 0, else set
sign of result to 1.

j- Multiply mantissa.

k. If MSB of resultant = 1, right shift mantissa by 1 and
increment exponent of resultant.

I If MSB of exponent changes from 1 to 0 as a result of the
increment, set overflow status.

m. Round if necessary and exit.

. Floating-Point Divide

The floating-point divide basically involves the subtraction of
exponents and the division of mantissas. The folowing is a
step by step description of a division algorithm (Figure 3).

a. If TOS = 0, set divide exception error and exit.

b. If NOS = 0, set result to 0 and exit.

c. Unpack TOS and NOS.

d. Convert EXP (TOS) and EXP (NOS) to unbiased form.
EXP (TOS) = EXP (TOS) - 1274,
EXP (NOS) = EXP (NOS) - 12744

e. Subtract exponent of TOS from exponent of NOS.
EXP = EXP (NOS) — EXP (TOS)

f. 1f MSB of EXP (NOS) = 0, MSB of EXP (TOS) = 1 and
MSB of EXP = 1, then set overflow status and exit.

g. If MSB of EXP (NOS) = 1, MSB of EXP (TOS) = 0, and
MSB of EXP = 0, then set underflow status and exit.
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‘ FSuB ’

SIGN (TOS) = EXP =
SIGN (T0S) EXP (TOS)

MAN (TOS)
MAN (NOS)

SIGN = SIGN (NOS)
MAN =
UNPACK SIGN (TOS) = N MAN (NOS) — MAN (TOS)
TOS & NOS SIGN (NOS)? l
Y
EXP (T0S) = SIGN s iIGE (TOS) SIGN = :“eﬁ (TOS)
EXP (NOS)? = =
MAN (TOS) + MAN (NOS) MAN (TOS) — MAN (NOS)
RIGHT SHIFT
MAN
LEFT SHIFT
‘ MAN
RIGHT SHIFT EXP = ‘
MAN (TOS) EXP + 1
EXP =
‘ EXP — 1

EXP (TOS) = Y
EXP (TOS) + 1

N
ADDITION
l ROUNDING
RIGHT SHIFT
MAN (NOS) SET SET
OVERFLOW UNDERFLOW
1 STATUS STATUS
EXP (NOS) =
EXP (NOS) + 1
SUBTRACTION
ROUNDING
( EXIT ‘,
Figure 1. Conceptual Floating-Point Addition/Subtraction. MOS-205
h. Add bias to exponent of resuit. The method used for doing the rounding during floating-point
EXP = EXP + 12749 arithmetic is known as “Round to Even”, i.e., if the resultant
i. Ifsignof TOS = signof NOS, setsignofresultto 0, else set number is exactly halfway between two floating point num-
sign of result to 1. bers, the number is rounded to the nearest floating-point
j. Divide mantissa of NOS by mantissa of TOS. numberwhose LSB of the mantissais 0. In order to simplify the
k. 1f MSB = 0, left shift mantissa and decrement exponent of explanation, the algorithms will be illustrated with 4-bit arith-
resultant, else go to n. metic. The existence of an accumulator will be assumed as
I.  If MSB of exponent changes from 0 to 1 as a result of the shown:
decrement, set underflow status.
m. Go to k.
n. Round if necessary and exit. oF 81 82 83 4 o " 1

The algorithms described above provide the user a means of
verifying the validity of the result. They do not necessarily
reflect the exact internal sequence of the Am9512.

The bit labels denote:

. Rounding
The Am9512 adopts a rounding algorithm that is consistent OF — The overflow bit
with the Intel® standard for floating-point arithmetic. The fol- B1-B4 — The 4 mantissa bits
lowing description is an excerpt from the paper published in G — The Guard bit
proceedings of Compsac 77, November 1977, pp. 107-112 by R — The Rounding bit
Dr. John F. Palmer of Intel Corporation. ST — The “Sticky” bit
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!

SIGN (TOS) @ SIGN (NOS)

T

MAN (TOS)*MAN (NOS)
MAN
OVERFLOW?
Y
105 6 NOS RESULT = 0
RIGHT SHIFT
‘ MAN
EXP (TOS) = ‘
EXP (TOS) — 12749 o
‘ EXP + 1
EXP (NOS) =
EXP (NOS) — 1274,
EXP (TOS) + EXP (NOS)
MULTIPLICATION
ROUNDING
Y SET
OVERFLOW? OVERFLOW
STATUS
SET
UNDERFLOW? UNISJERFLOW
TATUS

EXP =
EXP + 1274,

t

‘ EXIT ’

Figure 2. Conceptual Floating-Point Multiplication.

MOS-206

The Sticky bit is set to one if any ones are shifted right of the
rounding bit in the process of denormalization. If the Sticky bit
becomes set, it remains set throughout the operation. All
shifting in the Accumulator involves the OF, G, R and ST bits.
The ST bitis not affected by left shifts but, zeros are introduced
into OF by right shifts.

Rounding during addition of magnitudes — add 1 to the G
position, then if G=R=ST=0, set B4 to 0 (“Rounding to
Even”).

Rounding during subtraction of magnitudes — if more than one
left shift was performed, no rounding is needed, otherwise
round the same way as addition of magnitudes.

Rounding during multiplication — let the normalized double
length product be:

B1 B2 B3 B4 BS B6 B7 B8

Then G=B5, R=B6, ST=B7 V B8. The rounding is then per-
formed as in addition of magnitudes.

Rounding during division — let the first six bits of the nor-
malized quotient be

B1 B2 B3 B4 B5 B6

Then G=B5, R=B6, ST=0 if and only if remainder = 0. The
rounding is then performed as in addition of magnitudes.
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SIGN (TOS) @ SIGN (NOS)
SET DIVIDE
MAN =
EXCEPTION
STATUS MAN (NOS) MAN (TOS)
RESULT = 0
UNPACK
TOS & NOS
LEFT SHIFT
MAN
EXP (TOS) = l
EXP (TOS) — 127,
EXP =
EXP - 1
EXP (NOS) =
EXP (NOS) — 127, N @
Y
EXP =
EXP (NOS) - EXP (TOS)
SET
Y DIVISION
UNDERFLOW? UNDERFLOW
STATUS ROUNDING
Y SET
OVERFLOW? OVERFLOW
STATUS
EXP =
EXP + 127, EXIT

Figure 3. Conceptual Floating-Point Division.

MOS-207

CHSD

CHANGE SIGN DOUBLE PRECISION

7 6 5 4 3 2 1 0
Binary Coding: [SRE] 0 [ 1 [ o [1 [ 1o [ 1]
Hex Coding: AD IF SRE = 1
2D IF SRE = 0
Execution Time: See Table 2
Description:

The sign of the double precision TOS operand A is com-
plemented. The double precision result R is returned to TOS. If
the double precision operand A is zero, then the sign is not
affected. The status bit S and Z indicate the sign of the result and if
the result is zero. The status bits U, V and D are always cleared to
zero.

Status Affected: S, Z. (U, V, D always zero.)

STACK CONTENTS

BEFORE AFTER
A TOS R
B NOS B

CHSS

CHANGE SIGN SINGLE PRECISION

7 6 5 4 3 2 1 0
Binary Coding: [SRE| 0 [ 0 [ o [ o[ 1 [ o[ 1]

Hex Coding: 85 IF SRE = 1

05 IF SRE = 0
Execution Time: See Table 2
Description:

The sign of the single precision operand A at TOS is com-
plemented. The single precision result Ris returned to TOS. If the
exponent field of A is zero, all bits of R will be zeros. The status
bits S and Z indicate the sign of the result and if the result is zero.
The status bits U, V and D are cleared to zero.

Status Affected: S, Z. (U, V, D always zero.)

STACK CONTENTS

BEFORE AFTER
A TOS R
B NOS B
C C
D D
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CLR

CLEAR STATUS

7 6 5 4 3 2 1 0
Binary Coding: [SRE] 0 [ 0 [o [ o] o] o] o]
Hex Coding: 80 IF SRE = 1
00 IF SRE = 0
Execution Time: 4 clock cycles
Description:

The status bits S, Z, D, U, V are cleared to zero. The stack is not
affected. This essentially is a no operation command as far as
operands are concerned.

Status Affected: S, Z, D, U, V always zero.

DADD

DOUBLE PRECISION FLOATING-POINT ADD

7 6 5 4 3 2 1 0
Binary Coding:[SRE[ 0 [ 1 [ o [ 1[0 [o] 1]
Hex Coding: A9 IF SRE = 1
29 IFSRE =0
Execution Time: See Table 2
Description:

The double precision operand A from TOS is added to the double
precision operand B from NOS. The result is rounded to obtain
the final double precision result R which is returned to TOS. The
status bits S, Z, U and V are affected to report sign of the result, if
the result is zero, exponent underflow and exponent overflow
respectively. The status bit D will be cleared to zero.

Status Affected: S, Z, U, V. (D always zero.)

STACK CONTENTS

BEFORE AFTER
A TOS R
B -NOS — Undefined

DSUB

DOUBLE PRECISION
FLOATING-POINT SUBTRACT

7 6 5 4 3 2 1 0
Binary Coding: [SRE[ 0 [ 1 [ o [ 1] o [ 1] o]
Hex Coding: AA IF SRE =1
2AIF SRE =0
Execution Time: See Table 2
Description:

The double precision operand A at TOS is subtracted from the
double precision operand B at NOS. The result is rounded to
obtain the final double precision result R which is returned to
TOS. The status bits S, Z, U and V are affected to report sign of
the result, if the result is zero, exponent underflow and exponent
overflow respectively. The status bit D will be cleared to zero.

Status Affected: S, Z, U, V. (D always zero.)

STACK CONTENTS

BEFORE AFTER
A e— TOS — R
B NOS Undefined

DMUL

DOUBLE PRECISION
FLOATING-POINT MULTIPLY

7 6 5 4 3 2 1 0
Binary Coding:[SRe] 0 [ 1 [ o[ 1] o [ 1] 1]
Hex Coding: AB IF SRE =1
2B IF SRE =0
Execution Time: See Table 2
Description:

The double precision operand A from TOS is multiplied by the
double precision operand B from NOS. The result is rounded to
obtain the final double precision result R which is returned to
TOS. The status bits S, Z, U and V are affected to report sign of
the result, if the result is zero, exponent underflow and exponent
overflow respectively. The status bit D will be cleared to zero.

Status Affected: S, Z, U, V. (D always zero.)

STACK CONTENTS

BEFORE AFTER
A [e— TOS — R
B NOS Undefined
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DDIV

DOUBLE PRECISION
FLOATING-POINT DIVIDE

7 6 5 4 3 2 1 0
Binary Code: |SRE| 0 [ 1 [o[ 1 [1] 0o
Hex Coding: AC IF SRE = 1
2CIFSRE =0
Execution Time: See Table 2
Description:

The double precision operand B from NOS is divided by the
double precision operand A from TOS. The result (quotient) is
rounded to obtain the final double precision result R which is
returned to TOS. The status bits, S, Z, D, U and V are affected to
report sign of the result, if the result is zero, attempt to divide by
zero, exponent underflow and exponent overflow respectively.

Status Affected: S, Z, D, U, V

STACK CONTENT

BEFORE AFTER
A TOS R (see note)
B NOS Undefined

Note: If A'is zero, then R = B (Divide exception).

SADD

SINGLE PRECISION FLOATING-POINT ADD

7 6 5 4 3 2 1 0
Binary Coding: |SRE] 0 | 0 [0 [ o[ oo [ 1]
Hex Coding: 81 IF SRE = 1
01 IFSRE =0
Execution Time: See Table 2
Description:

The single precision operand A from TOS is added to the single
precision operand B from NOS. The result is rounded to obtain
the final single precision result R which is returned to TOS. The
status bits S, Z, U and V are affected to report the sign of the
result, if the result is zero, exponent underflow and exponent
overflow respectively. The status bit D will be cleared to zero.

Status Affected: S, Z, U, V. (D always zero.)

STACK CONTENT

SSUB

SINGLE PRECISION
FLOATING-POINT SUBTRACT

7 6 5 4 3 2 1 0
Binary Coding: [SRE[ 0 [0 [ o o[ o[ 1 [ o]
Hex Coding: 82 IF SRE = 1
02 IF SRE =0
Execution Time: See Table 2
Description:

The single precision operand A at TOS is subtracted from the
single precision operand B at NOS. The result is rounded to
obtain the final single precision result R which is returned to TOS.
The status bits S, Z, U and V are affected to report the sign of the
result, if the result is zero, exponent underflow and exponent
overflow respectively. The status bit D will be cleared to zero.

Status Affected: S, Z, U, V. (D always zero.)

STACK CONTENTS

BEFORE AFTER
A |— TOS —=1 R
B NOS o]
c D
\:—D"i” | Undefined |

SMUL

SINGLE PRECISION
FLOATING-POINT MULTIPLY

7 6 5 4 3 2 1 0
BinaryCoding:@E| 0 } 0 0 | 0 | 0 ‘ 1—[ 17
Hex Coding: 83 IF SRE = 1

03 IF SRE =0
Execution Time: See Table 2
Description:

The single precision operand A from TOS is mulitiplied by the
single precision operand B from NOS. The result is rounded to
obtain the final single precision result R which is returned to TOS.
The status bits S, Z, U and V are affected to report the sign of the
result, if the result is zero, exponent underflow and exponent
overflow respectively. The status bit D will be cleared to zero.

Status Affected: S, Z, U, V. (D always zero.)

STACK CONTENTS

BEFORE AFTER
A TOS R
B [e— NOS —= C
C D
D ] Undefined

BEFORE AFTER
A TOS R
B NOS C
C D
i D Undefined
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SDIV

SINGLE PRECISION
FLOATING-POINT DIVIDE

7 6 5 4 3 2 1 0

Binary Coding:‘SRE] 0 l 0 | 0 | 0 { 1 ‘ 0 } 0 t
Hex Coding: 84 IF SRE = 1
04 IF SRE =0

Execution Time: See Table 2

Description:

The single precision operand B from NOS is divided by the
single precision operand A from TOS. The result (quotient) is
rounded to obtain the final result R which is returned to TOS.
The status bits S, Z, D, U and V are affected to report the sign of
the result, if the result is zero, attempt to divide by zero, expo-
nent underflow and exponent overflow respectively.

Status Affected: S, Z, D, U, V

STACK CONTENTS

BEFORE AFTER
A [—— TOS —= R (see note)
B NOS C
C D
D Undefined

Note: If exponent field of A is zero then R = B (Divide exception).

POPS

POP STACK SINGLE PRECISION

7 6 5 4 3 2 1 0
f T T T T T T T 1
Binary Coding: ‘SHE’ 0 | 0 [ 0 I 0 [ 1 k 1 1 1 |
Hex Coding: 87 IF SRE = 1
07 IF SRE =0
Execution Time: See Table 2
Description:

The single precision operand A is popped from the. stack. The
internal stack control mechanism is such that A will be written at
the bottom of the stack. The status bits S and Z are affected to
report the sign of the new operand at TOS and if it is zero,
respectively. The status bits U, V and D will be cleared to zero.
Note that only the exponent field of the new TOS is checked for
zero, if it is zero status bit Z will set to 1.

Status Affected: S, Z. (U, V, D always zero.)

STACK CONTENTS

PTOD

PUSH STACK DOUBLE PRECISION

7 6 5 4 3 2 1 0
Binary Coding: [SRE] 0 [ 1 [ o [1 [ 1 [ 1] o |
Hex Coding: AE IF SRE = 1
2EIFSRE =0
Execution Time: See Table 2

Description:

The double precision operand A from the TOS is pushed back on
to the stack. This is effectively a duplication of A into two con-
secutive stack locations. The status S and Z are affected to report
sign of the new TOS and if the new TOS is zero respectively. The
status bits U, V and D will be cleared to zero.

Status Affected: S, Z. (U, V, D always zero.)

STACK CONTENTS

BEFORE AFTER
A TOS A
B NOS A

PTOS

PUSH STACK SINGLE PRECISION

7 6 5 4 3 2 1 0
Binary Coding: [SRE| 0 [ 0 [ o [o [ 1 [ 1] o]
Hex Coding: 86 IF SRE = 1
06 IF SRE =0
Execution Time: See Table 2

Description:

This instruction effectively pushes the single precision operand
from TOS on to the stack. This amounts to duplicating the
operand at two locations in the stack. However, if the operand at
TOS prior to the PTOS command has only its exponent field as
zero, the new content of the TOS will all be zeroes. The contents
of NOS will be an exact copy of the old TOS. The status bits S
and Z are affected to report the sign of the new TOS and if the
content of TOS is zero, respectively. The status bits U, V and D
will be cleared to zero.

Status Affected: S, Z. (U, V, D always zero.)

STACK CONTENTS

BEFORE AFTER
A [——TOS —» B
B NOS C
C D
D A

BEFORE AFTER
A TOS A* See note
B NOS A
C B
D Cc

Note: A* = A if Exponent field of A is nct zero.
A* = 0 if Exponent field of A is zero.
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POPD

POP STACK DOUBLE PRECISION

7 6 5 4 3 2 1 0,

Binary Coding: ‘SRE’ 0 l 1 l 0 l 1 \ 1 L1 ‘ 11
Hex Coding: AF IF SRE = 1
2FIFSRE =0

Execution Time: See Table 2

Description:

The double precision operand A is popped from the stack. The
internal stack control mechanism is such that A will be written at
the bottom of the stack. This operation has the same effect as
exchanging TOS and NOS. The status bits S and Z are affected to
report the sign of the new operand at TOS and if it is zero,
respectively. The status bits U, V and D will be cleared to zero.

Status Affected: S, Z (U, V and D always zero.)

XCHS .

EXCHANGE TOS AND NOS
SINGLE-PRECISION

7 6 5 4 3 2 1 0
Binary Coding: |SRE| 0 [0 [0 |1 [0 [0 ] o]

Hex Coding: 88 IF SRE = 1

08 IF SRE = 0
Execution Time: See Table 2
Description:

The single precision operand A at the TOS and the single preci-
sion operand B at the NOS are exchanged. After execution, Bis at
the TOS and A is at the NOS. All other operands are unchanged.

Status Affected: S, Z (U, V and D always zero.)

STACK CONTENTS

STACK CONTENTS BEFORE AFTER
BEFORE AFTER A TOS B
A TOS B B NOS A
B ~—— NOS —= A C C
D D
Am25LS138
1o/M Gt
A15 of G2A +12V 45V
A4 f——————=0f G2B T ? ’_J:
A3 =1 C | | |
Atz 8 Voo Vec Vss
Al A Yy o————0| CS

A8

Am8085

CcD
Amg512

ADO-AD7 < 8-BIT DATA BUS > DB0-DB7
RD o| ro
RST6.5 WR o| wa eRR
RSTSS ik ouT cLK END
READY  peser ouT RESET PAUSE JO~
+5V EACK

10K

Figure 4. Am9512 to Am8085 Interface.

MOsS-213
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MAXIMUM RATINGS beyond which useful life may be impaired

Storage Temperature —65to +150°C
Vpp with Respect to Vgg ~0.5to +15.0V
Ve with Respect to Vgg —-0.5t0 +7.0V
All Signal Voltages with Respect to Vgg —0.5t0 +7.0V
Power Dissipation (Package Limitation) 2.0W

The products described by this specification include internal circuitry designed to protect input devices from damaging accumulations of
static charge. It is suggested, nevertheless, that conventional precautions be observed during storage, handling and use in order to
avoid exposure to excessive voltages.

ELECTRICAL CHARACTERISTICS Over Operating Range (Note 1)

Parameters Description Test Conditions Min. Typ. Max. Units
VOH Output HIGH Voltage IOH = —200uA 3.7 Volts
VoL Output LOW Voltage IOL = 3.2mA 0.4 Volts
VIH Input HIGH Voltage 2.0 vCC Volts
VIL Input LOW Voltage -0.5 0.8 Volts
X Input Load Current VSS < VI < VCC +10 A N
102 Data Bus Leakage VO = 04v 10 kA
VO = VCC 10
Ta = +25°C 50 90

icc VCC Supply Current . Th-o0C 95 mA
Tp = —55°C 100

o Tp = +25°C 50 90

IDD VDD Supply Current | Ta=oC 95 mA
Ta = ~55°C 100

(ofe] Output Capacitance 8 10 pF

o] Input Capacitance fc = 1.0MHz, Inputs = OV 5 8 pF

CIo /O Capacitance 10 12 pF

24

INPUT AND OUTPUT WAVEFORMS FOR AC TESTS

0.45

2.0

20

TEST POINTS

0.8

0.8
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Am@512
SWITCHING CHARACTERISTICS

Am9512DC Am9512-1DC
Parameters Description Min Max Min Max Units
TAPW EACK LOW Pulse Width 100 75 ns
TCDR C/D to RD LOW Set-up Time 0 0 ns
TCDW C/D to WR LOW Set-up Time 0 0 ns
TCPH Clock Pulse HIGH Width 200 500 140 500 ns
TCPL Clock Pulse LOW Width 240 160 ns
TCSP CS LOW to PAUSE LOW Delay (Note 5) 150 100 ns
TCSR CS to RD LOW Set-up Time 0 0 ns
TCSW CS LOW to WR LOW Set-up Time 0 0 ns
TCY Clock Period 480 5000 320 2000 ns
TDW Data Valid to WR HIGH Delay 150 100 ns
TEAE EACK LOW to END LOW Delay 200 175 ns
TEHPHR END HIGH to PAUSE HIGH Data Read when Busy 5.5TCY+300 5.5TCY+200 ns
TEHPHW | END HIGH to PAUSE HIGH Write when Busy 200 175 ns
TEPW END HIGH Pulse Width 400 300 ns
TEX Execution Time See Table 2 ns
TOP Data Bus Output Valid to PAUSE HIGH Delay 0 0 ns
revn| PR o e v s [ospombees o
TPPWRB | END HIGH to PAUSE HIGH Read when Busy |2 See Table 2 ns
Status 1.5TCY+50 | 3.5TCY+300 | 1.5TCY+50 | 3.5TCY+200
TPPWW | PAUSE LOW Pulse Width Write when Not Busy TCSW+50 TCSW+50 ns
TPPWWB | PAUSE LOW Pulse Width Write when Busy See Table 2 ns
TPR PAUSE HIGH to Read HIGH Hold Time 0 0 ns
TPW PAUSE HIGH to Write HIGH Hold Time 0 0 ns
TRCD RD HIGH to C/D Hold Time 0 0 ns
TRCS RD HIGH to CS HIGH Hold Time 0 0 ns
TRO RD LOW to Data Bus On Delay 50 50 ns
TRZ RD HIGH to Data Bus Off Delay 50 200 50 150 ns
TSAPW SVACK LOW Pulse Width 100 75 ns
TSAR SVACK LOW to SVREQ LOW Delay 300 200 ns
TWCD WR HIGH to C/D Hold Time 60 30 ns
TWCS WR HIGH to CS HIGH Hold Time 60 30 ns
TWD 'WR HIGH to Data Bus Hold Time 20 20 ns
NOTES: .
1. Typical values are for T4 = 25°C, nominal supply voltages 4. END HIGH pulse width is specified for EACK tied to VSS.
and nominal processing parameters. Otherwise TEAE applies.
2. Switching parameters are listed in alphabetical order. 5. PAUSE is pulled low for both command and data operations.
3. Test conditions assume transition times of 20ns or less, out- 6. TEX is the execution time of the current command (see the
put loading of one TTL gate plus 100pF and timing reference Command Execution Times table). o .
levels of 0.8V and 2.0V. 7. PAUSE will go low at this point if CS is low and RD and WR are
high.

100



Am9512

TIMING DIAGRAMS

READ OPERATION

Y — ]
TCPH-

)-—Tcm.——l
RD \ / [=—TRCS \
TCDR i | f— [~—TRCD—{
TCSR S ’ TPR _.‘ e
—\ ~=-TRO- TRZ
cs
{
d
TPPWR ————=] {
PAUSE \ Z {
¢ NOTE 7
¥
—= |=—TO0P

DATA
Do-D1 VALID X
! !
i\
' ala X
cio
Iye
\ b

MOS-208

OPERAND READ WHEN Am9512 IS BUSY

—] j—— TCDR
S _
5 AN “ /
f=——TCSR TPR =—TRCS
TRO
= \
\ it f
TPPWRB TRCD
PAUSE \ n 1Z Nois 7
e |=—ToP TRZ—]
_ R XKD oarn X
po-o7 B VALID
c/D ! {
b 7
TEHPHR

END / \
-
17

MOS-209
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Am9512

PAUSE

DO-D7

TIMING DIAGRAMS (Cont.)

OPERAND ENTRY

[-— TCSW

J A
f

t——”——/«rwcs

f=—TWCD

— "

J A
7/

A

o

MOS-210

COMMAND OR DATA WRITE WHEN Am9512 IS BUSY

TCSW f— |- TWCS
cs
TCSP f— TPW
I
TPPWWB r T
PAUSE \ Z |
- NOTE 7
TWD

D0-D7
TCOW TWCD
c/D
-
TEHPHW
END / \

MOS-211
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Am9512

TIMING DIAGRAMS (Cont.)

COMMAND INITIATION

TCSP —| - I. TPW =]
/4
L4
PAUSE
_—.—} TDW —=| je——TWD NOTE 7
V) — J L
\ s r
DO-D7 DATA VALID K
J J ke
r T
TCOW —.1 |~ TWCD -I
£ = %
cib ! '\
/4
7
TEX TEPW

END / \
W o |8

1/ — }
TEAE —~|
I} vy TAPW
EACK
TEX
SVREQ /
) — J
tr 1/
TSAR

*

SVACK
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